Compare commits

...

61 Commits

Author SHA1 Message Date
c50719de36 Implement Matrix4x4::Scale 2024-02-27 01:56:54 -05:00
405800dbc5 Large Restructure and Organization x2 2024-02-27 00:42:37 -05:00
718f63a3c8 Large Restructure and Organization 2024-02-27 00:42:24 -05:00
8049fd3a60 Implement Matrix4x4::OpenGLPerspProjLH 2024-02-15 02:28:03 -05:00
2e7bba8d87 Implement Matrix4x4::OpenGLOrthoProjLH 2024-02-15 02:17:02 -05:00
c5628b028b Implement Matrix4x4::OpenGLOrthoProjLH 2024-02-15 01:51:51 -05:00
fd2e3f894a Implement by-Reference operators 2024-02-14 18:12:02 -05:00
efead577a5 Implement AABB class 2024-02-06 16:34:49 -05:00
92a20a9347 Implement RNG class 2024-02-06 16:34:42 -05:00
00c0d30d6d Implement RNG class 2024-02-06 16:34:36 -05:00
8fa94c1519 Implement Vector2::Abs() and Vector3::Abs() 2024-02-06 16:34:26 -05:00
e18a2634de Implement float * Vector3 operator 2024-02-06 16:34:13 -05:00
cb5e6b4f99 Implement AABB::CornerPoint/ExtremePoint/PointOnEdge/FaceCenterPoint/FacePoint 2024-02-02 15:59:05 -05:00
9a5f12e505 Implement J3ML Namespace 2024-02-02 13:53:23 -05:00
d37b685df9 Implement Matrix3x3 FromScale and ScaleBy 2024-02-01 21:02:18 -05:00
792f7801bb Implement Vector4 operator= 2024-02-01 20:47:44 -05:00
12bf687f33 Implement static operator* 2024-02-01 20:22:32 -05:00
432fa32f57 Implement Mat4x4::FromTranslation 2024-02-01 20:07:00 -05:00
0597b4c937 Implement Mat4x4::Swaps 2024-02-01 17:49:05 -05:00
69ca7c5c05 Implement Mat4x4::LookAt 2024-02-01 17:27:32 -05:00
c858d3b889 Implement Mat4x4 member docs 2024-02-01 17:23:48 -05:00
35fded8ec0 Implement Mat4x4::WorldX/Y/Z/IsFinite 2024-02-01 17:17:04 -05:00
6b78a0b731 Implement Mat4x4::Diagonal 2024-02-01 17:10:56 -05:00
ea61b5ea51 Implement Mat4x4::Transpose 2024-02-01 17:09:49 -05:00
a32719cdeb Implement Mat4x4::Determinant 2024-02-01 14:20:25 -05:00
19b5630deb Move to implementation file 2024-01-31 20:06:35 -05:00
5080305965 Implement Mat4x4 Inverse() (Yikes!!!) 2024-01-31 20:05:31 -05:00
40e69d5c4f Implement Mat4x4 Translate, Transform, FromTranslation 2024-01-31 18:34:15 -05:00
132b8a0a66 Implement more methods 2024-01-30 21:35:55 -05:00
0c20e9bb21 Implement constant Vector4s 2024-01-30 21:35:41 -05:00
710a41cbb1 Implement Mat4x4 2024-01-30 21:30:13 -05:00
b76c5683db Remove Vector2 * 2024-01-30 21:29:42 -05:00
7278d783dc Fix Circular depends 2024-01-30 21:29:19 -05:00
ef297e525c Implement CreateFrustumFromCoordinateFrame() 2024-01-30 21:29:07 -05:00
239c90f75b Implement CreateFrustumFromCoordinateFrame() 2024-01-30 21:29:01 -05:00
09d0391c85 Fix member public 2024-01-30 21:28:42 -05:00
83021229d5 Fix circular depends 2024-01-30 21:28:21 -05:00
21ceca62dc Adding more Mat4x4 functionality 2024-01-30 13:13:09 -05:00
32577f79b8 Header implementations 2024-01-29 14:50:00 -05:00
e76a0954d3 Implement Vector-to-Vector Multiplication + division 2024-01-29 14:43:51 -05:00
47b25c695f Partial Implement QuadTree 2024-01-29 14:43:26 -05:00
6c7d63e467 Implement AABB2D 2024-01-29 03:16:50 -05:00
16c8dd1998 Implement QuadTree 2D 2024-01-26 15:55:51 -05:00
79f6b2f154 Implement Vector2 functions 2024-01-26 15:55:42 -05:00
08974413ae Implement AABB2D 2024-01-26 15:53:25 -05:00
256fe730cd Implement Geometric Class Definitions (round 2) 2024-01-26 00:14:28 -05:00
4152b0d2aa Implement Geometric Class Definitions 2024-01-25 19:09:48 -05:00
56077b7c86 Implement AABB 2024-01-25 19:09:36 -05:00
5cd5a44963 Implement Geometric Types 2024-01-25 14:01:19 -05:00
d012af1214 Implement Transform2D 2024-01-23 21:46:07 -05:00
f04e08201d Merge remote-tracking branch 'origin/main' 2024-01-23 04:14:34 -05:00
f7a7ec38d7 Implement Transform2D.h 2024-01-23 04:14:24 -05:00
a64f129bf7 Make it static 2024-01-15 16:09:44 -05:00
fd2289cee3 Implement V3::Direction 2024-01-15 15:20:32 -05:00
03f0193df7 Implement M3x3::SetColumn 2024-01-15 15:17:39 -05:00
1eae732718 Implement D3DOrtho 2024-01-12 10:27:36 -05:00
32046d88cd Implement Diagonal 2024-01-12 05:53:12 -05:00
93759ba545 Jim 2024-01-12 05:17:01 -05:00
dea5735c87 Implement CreateFrustumFromCamera 2024-01-10 14:46:12 -05:00
cc9ff95daa Implement ToQuat 2024-01-07 02:14:31 -05:00
a1d4df30c7 Implement ToQuat 2024-01-04 09:30:14 -05:00
66 changed files with 3694 additions and 340 deletions

View File

@@ -4,13 +4,10 @@ PROJECT(J3ML
LANGUAGES CXX
)
if (PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
message(FATAL_ERROR "In-source builds are not allowed")
endif()
set(CMAKE_CXX_STANDARD 20)
#set(CMAKE_POSITION_INDEPENDENT_CODE ON)
if (WIN32)
@@ -32,7 +29,41 @@ file(GLOB_RECURSE J3ML_SRC "src/J3ML/*.c" "src/J3ML/*.cpp")
include_directories("include")
add_library(J3ML SHARED ${J3ML_SRC}
src/J3ML/LinearAlgebra/AxisAngle.cpp)
src/J3ML/LinearAlgebra/AxisAngle.cpp
include/J3ML/LinearAlgebra/Vector.h
include/J3ML/Geometry/Plane.h
include/J3ML/Geometry/AABB.h
include/J3ML/Geometry/Frustum.h
include/J3ML/Geometry/OBB.h
include/J3ML/Geometry/Capsule.h
include/J3ML/Geometry/Sphere.h
include/J3ML/Geometry/Ray.h
include/J3ML/Geometry/QuadTree.h
include/J3ML/Geometry/LineSegment.h
include/J3ML/Geometry/TriangleMesh.h
include/J3ML/Geometry/Polygon.h
include/J3ML/Geometry/Triangle.h
include/J3ML/Geometry/Triangle2D.h
src/J3ML/Geometry/AABB.cpp
src/J3ML/Geometry/Plane.cpp
src/J3ML/Geometry/Sphere.cpp
src/J3ML/Geometry/Frustum.cpp
src/J3ML/Geometry/OBB.cpp
src/J3ML/Geometry/Ray.cpp
src/J3ML/Geometry/Capsule.cpp
src/J3ML/Geometry/TriangleMesh.cpp
src/J3ML/Geometry/QuadTree.cpp
src/J3ML/Geometry/LineSegment.cpp
include/J3ML/Geometry/AABB2D.h
src/J3ML/Geometry/Polygon.cpp
include/J3ML/Geometry/Polyhedron.h
src/J3ML/Geometry/Polyhedron.cpp
include/J3ML/Algorithm/RNG.h
src/J3ML/Algorithm/RNG.cpp
include/J3ML/Algorithm/Spring.h
include/J3ML/Algorithm/DifferentialSolvers.h
include/J3ML/Units.h
src/J3ML/J3ML.cpp)
set_target_properties(J3ML PROPERTIES LINKER_LANGUAGE CXX)
install(TARGETS ${PROJECT_NAME} DESTINATION lib/${PROJECT_NAME})

View File

@@ -0,0 +1,42 @@
//
// Created by dawsh on 2/8/24.
//
namespace J3ML::Algorithm
{
/// Implementations for a variety of Differential Equation Solving algorithms
namespace Solvers
{
// Consider a differential equation
// dy/dx = (x + y + xy)
float eq(float x, float y)
{
return (x + y + x*y);
}
// Accelleration = Velocity / Time
// Velocity = Position / Time
// Position = Vector3
//
float euler(float x0, float y, float h, float x)
{
float temp = -0.f;
// Iterating till the point at which we need approximation
while (x0 < x) {
temp = y;
y = y + h * eq(x0, y);
x0 = x0 + h;
}
return y;
}
class EulerMethodSolver {};
class SemiImplicitEulerMethodSolver {};
class GaussSeidelMethodSolver {};
class GradientDescentSolver {};
class VerletIntegrationSolver {};
}
}

View File

@@ -0,0 +1,99 @@
#pragma once
#include "J3ML/J3ML.h"
namespace J3ML::Algorithm
{
/** @brief A linear congruential random number generator.
Uses D.H. Lehmer's Linear Congruential Method (1949) for generating random numbers.
Supports both Multiplicative Congruential Method (increment==0) and
Mixed Congruential Method (increment!=0)
It is perhaps the simplest and fastest method to generate pseudo-random numbers on
a computer. Per default uses the values for Minimal Standard LCG.
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.math.rutgers.edu/~greenfie/currentcourses/sem090/pdfstuff/jp.pdf
Pros:
<ul>
<li> Easy to implement.
<li> Fast.
</ul>
Cons:
<ul>
<li> NOT safe for cryptography because of the easily calculatable sequential
correlation between successive calls. A case study:
http://www.cigital.com/papers/download/developer_gambling.php
<li> Tends to have less random low-order bits (compared to the high-order bits)
Thus, NEVER do something like this:
u32 numBetween1And10 = 1 + LCGRand.Int() % 10;
Instead, take into account EVERY bit of the generated number, like this:
u32 numBetween1And10 = 1 + (int)(10.0 * (double)LCGRand.Int()
/(LCGRand.Max()+1.0));
or simply
u32 numBetween1And10 = LCGRand.Float(1.f, 10.f);
</ul> */
class RNG {
public:
/// Initializes the generator from the current system clock.
RNG();
RNG(u32 seed, u32 multiplier = 69621,
u32 increment = 0, u32 modulus = 0x7FFFFFFF) // 2^31 - 1
{
Seed(seed, multiplier, increment, modulus);
}
/// Reinitializes the generator to the new settings.
void Seed(u32 seed, u32 multiplier, u32 increment, u32 modulus = 0x7FFFFFFF);
/// Returns a random integer picked uniformly in the range [0, MaxInt()]
u32 Int();
/// Returns the biggest number the generator can yield. [modulus - 1]
u32 MaxInt() const { return modulus - 1;}
/// Returns a random integer picked uniformly in the range [0, 2^32-1].
/// @note The configurable modulus and increment are not used by this function, but are always increment == 0, modulus=2^32
u32 IntFast();
/// Returns a random integer picked uniformly in the range [a, b]
/// @param a Lower bound, inclusive.
/// @param b Upper bound, inclusive.
/// @return A random integer picked uniformly in the range [a, b]
int Int(int a, int b);
/// Returns a random float picked uniformly in the range [0, 1].
float Float();
/// Returns a random float picked uniformly in the range [0, 1].
/// @note this is much slower than Float()! Prefer that function if possible.
float Float01Incl();
/// Returns a random float picked uniformly in the range ]-1, 1[.
/// @note This function has one more bit of randomness compared to Float(), but has a theoretical bias
/// towards 0.0, since floating point has two representations for 0 (+0, and -0).
float FloatNeg1_1();
/// Returns a random float picked uniformly in the range [a, b[.
/// @param a Lower bound, inclusive.
/// @param b Upper bound, exclusive.
/// @return A random float picked uniformly in the range [a, b[
/// @note This function is slower than RNG::FloatIncl(). If you don't care about the open/closed interval, prefer that function.
float Float(float a, float b);
/// Returns a random float picked uniformly in the range [a, b].
/// @param a Lower bound, inclusive.
/// @param b Upper bound, inclusive.
/// @return A random float picked uniformly in the range [a, b]
float FloatIncl(float a, float b);
u32 multiplier;
u32 increment;
u32 modulus;
u32 lastNumber;
};
}

View File

@@ -0,0 +1,21 @@
//
// Created by dawsh on 2/8/24.
//
namespace J3ML::Algorithm
{
// Numerical model of a "Spring" object
// Simulates any oscillating system i.e. a mass suspended from a spring.
class Spring
{
float Dampening;
float Stiffness;
float Goal;
float RestLength = 1.f;
bool Overdamped() const;
bool Undamped() const;
bool Underdamped() const;
bool CriticallyDamped() const;
};
}

View File

@@ -1,66 +1,32 @@
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#pragma once
namespace Geometry {
using Point2D = LinearAlgebra::Vector2;
namespace J3ML::Geometry {
using Vector2 = J3ML::LinearAlgebra::Vector2;
using Vector3 = J3ML::LinearAlgebra::Vector3;
class LineSegment2D
{
Point2D A;
Point2D B;
Vector2 A;
Vector2 B;
};
class Rectangle; //AABB2D;
class Rectangle;
class AABB;
class OBB;
class Capsule;
class Frustum;
class OBB2D;
class Line2D;
class Ray2D;
class Triangle2D;
class Polygon2D;
struct IntersectionResult2D {
};
struct IntersectionResult2D {};
bool Intersects2D(LineSegment2D seg, Rectangle rect);
IntersectionResult2D GetIntersection2D(LineSegment2D seg, Rectangle rect);
using Point3D = LinearAlgebra::Vector3;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
// intersection queries.
// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB;
class Capsule;
class Line;
class LineSegment
{
Point3D A;
Point3D B;
};
class Ray
{
Point3D Origin;
Point3D Direction;
};
class OBB;
class Frustum;
class Plane;
class Polygon;
class Polyhedron;
class QuadTree;
class OctTree;
class Sphere;
class Triangle;
class TriangleMesh;
}

View File

@@ -0,0 +1,158 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include "J3ML/LinearAlgebra.h"
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Polyhedron.h>
// TODO: Fix circular include between AABB and OBB
namespace J3ML::Geometry
{
using namespace LinearAlgebra;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
// intersection queries.
// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB {
public:
Vector3 minPoint;
Vector3 maxPoint;
static int NumFaces() { return 6; }
static int NumEdges() { return 12; }
static int NumVertices() { return 8; }
static AABB FromCenterAndSize(const Vector3 &center, const Vector3 &size);
float MinX() const;
float MinY() const;
float MinZ() const;
float MaxX() const;
float MaxY() const;
float MaxZ() const;
/// Returns the smallest sphere that contains this AABB.
/// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const;
Vector3 HalfSize() const;
/// Returns the largest sphere that can fit inside this AABB
/// This function computes the largest sphere that can fit inside this AABB.
Sphere MaximalContainedSphere() const;
bool IsFinite() const;
Vector3 Centroid() const;
Vector3 Size() const;
// Quickly returns an arbitrary point inside this AABB
Vector3 AnyPointFast() const;
Vector3 PointInside(float x, float y, float z) const;
// Returns an edge of this AABB
LineSegment Edge(int edgeIndex) const;
Vector3 CornerPoint(int cornerIndex) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance);
Vector3 PointOnEdge(int edgeIndex, float u) const;
Vector3 FaceCenterPoint(int faceIndex) const;
Vector3 FacePoint(int faceIndex, float u, float v) const;
Vector3 FaceNormal(int faceIndex) const;
Plane FacePlane(int faceIndex) const;
static AABB MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints);
float GetVolume() const;
float GetSurfaceArea() const;
Vector3 GetRandomPointInside();
Vector3 GetRandomPointOnSurface();
Vector3 GetRandomPointOnEdge();
Vector3 GetRandomCornerPoint();
AABB Translated(const Vector3& offset) const;
AABB TransformAABB(const Matrix3x3& transform);
AABB TransformAABB(const Matrix4x4& transform);
AABB TransformAABB(const Quaternion& transform);
OBB Transform(const Matrix3x3& transform);
OBB Transform(const Matrix4x4& transform);
OBB Transform(const Quaternion& transform);
bool Contains(const Vector3& point) const;
bool Contains(const LineSegment& lineSegment) const;
bool Contains(const AABB& aabb) const;
bool Contains(const OBB& obb) const;
bool Contains(const Sphere& sphere) const;
bool Contains(const Triangle& triange) const;
bool Contains(const Polygon& polygon) const;
bool Contains(const Frustum& frustum) const;
bool Contains(const Polyhedron& polyhedron) const;
bool Contains(const Capsule& capsule) const;
// Tests whether this AABB and the given object intersect.
bool Intersects(const Ray& ray, float dNear, float dFar) const;
bool Intersects(const Capsule& capsule) const;
bool Intersects(const Triangle& triangle) const;
bool Intersects(const Polygon& polygon) const;
bool Intersects(const Frustum& frustum) const;
bool Intersects(const Polyhedron& polyhedron) const;
TriangleMesh Triangulate(int numFacesX, int numFacesY, int numFacesZ, bool ccwIsFrontFacing) const;
AABB Intersection(const AABB& rhs) const;
bool IntersectLineAABB(const Vector3& linePos, const Vector3& lineDir, float tNear, float tFar) const;
void SetFrom(const Vector3 *pVector3, int i);
void SetFromCenterAndSize(const Vector3 &center, const Vector3 &size);
void SetFrom(const OBB &obb);
void SetFrom(const Sphere &s);
Vector3 GetRandomPointInside() const;
void SetNegativeInfinity();
void Enclose(const Vector3 &point);
void Enclose(const Vector3 &aabbMinPt, const Vector3 &aabbMaxPt);
void Enclose(const LineSegment &lineSegment);
void Enclose(const OBB &obb);
};
}

View File

@@ -0,0 +1,106 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
namespace J3ML::Geometry
{
using LinearAlgebra::Vector2;
// CaveGame AABB
class AABB2D
{
public:
Vector2 minPoint;
Vector2 maxPoint;
AABB2D() {}
AABB2D(const Vector2& min, const Vector2& max):
minPoint(min), maxPoint(max)
{}
float Width() const { return maxPoint.x - minPoint.x; }
float Height() const { return maxPoint.y - minPoint.y; }
float DistanceSq(const Vector2& pt) const
{
Vector2 cp = pt.Clamp(minPoint, maxPoint);
return cp.DistanceSq(pt);
}
void SetNegativeInfinity();
void Enclose(const Vector2& point)
{
minPoint = Vector2::Min(minPoint, point);
maxPoint = Vector2::Max(maxPoint, point);
}
bool Intersects(const AABB2D& rhs) const
{
return maxPoint.x >= rhs.minPoint.x &&
maxPoint.y >= rhs.minPoint.y &&
rhs.maxPoint.x >= minPoint.x &&
rhs.maxPoint.y >= minPoint.y;
}
bool Contains(const AABB2D& rhs) const
{
return rhs.minPoint.x >= minPoint.x && rhs.minPoint.y >= minPoint.y
&& rhs.maxPoint.x <= maxPoint.x && rhs.maxPoint.y <= maxPoint.y;
}
bool Contains(const Vector2& pt) const
{
return pt.x >= minPoint.x && pt.y >= minPoint.y
&& pt.x <= maxPoint.x && pt.y <= maxPoint.y;
}
bool Contains(int x, int y) const
{
return x >= minPoint.x && y >= minPoint.y
&& x <= maxPoint.x && y <= maxPoint.y;
}
bool IsDegenerate() const
{
return minPoint.x >= maxPoint.x || minPoint.y >= maxPoint.y;
}
bool HasNegativeVolume() const
{
return maxPoint.x < minPoint.x || maxPoint.y < minPoint.y;
}
bool IsFinite() const
{
return minPoint.IsFinite() && maxPoint.IsFinite() && minPoint.MinElement() > -1e5f && maxPoint.MaxElement() < 1e5f;
}
Vector2 PosInside(const Vector2 &normalizedPos) const
{
return minPoint + normalizedPos.Mul(maxPoint - minPoint);
}
Vector2 ToNormalizedLocalSpace(const Vector2 &pt) const
{
return (pt - minPoint).Div(maxPoint - minPoint);
}
AABB2D operator+(const Vector2& pt) const
{
AABB2D a;
a.minPoint = minPoint + pt;
a.maxPoint = maxPoint + pt;
return a;
}
AABB2D operator-(const Vector2& pt) const
{
AABB2D a;
a.minPoint = minPoint - pt;
a.maxPoint = maxPoint - pt;
return a;
}
};
}

View File

@@ -0,0 +1,27 @@
#pragma once
#include "LineSegment.h"
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
using namespace LinearAlgebra;
class Capsule
{
// Specifies the two inner points of this capsule
LineSegment l;
// Specifies the radius of this capsule
float r;
Capsule();
Capsule(const LineSegment& endPoints, float radius);
Capsule(const Vector3& bottomPt, const Vector3& topPt, float radius);
bool IsDegenerate() const;
float Height() const;
float Diameter() const;
Vector3 Bottom() const;
Vector3 Center() const;
Vector3 Centroid() const;
Vector3 ExtremePoint(const Vector3& direction);
};
}

View File

@@ -0,0 +1,42 @@
//
// Created by dawsh on 1/25/24.
//
#pragma once
#include "Plane.h"
#include <J3ML/LinearAlgebra/CoordinateFrame.h>
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::CoordinateFrame;
enum class FrustumType
{
Invalid,
/// Set the Frustum type to this value to define the orthographic projection formula. In orthographic projection,
/// 3D images are projected onto a 2D plane essentially by flattening the object along one direction (the plane normal).
/// The size of the projected images appear the same independent of their distance to the camera, and distant objects will
/// not appear smaller. The shape of the Frustum is identical to an oriented bounding box (OBB).
Orthographic,
/// Set the Frustum type to this value to use the perspective projection formula. With perspective projection, the 2D
/// image is formed by projecting 3D points towards a single point (the eye point/tip) of the Frustum, and computing the
/// point of intersection of the line of the projection and the near plane of the Frustum.
/// This corresponds to the optics in the real-world, and objects become smaller as they move to the distance.
/// The shape of the Frustum is a rectangular pyramid capped from the tip.
Perspective
};
class Frustum {
public:
Plane TopFace;
Plane BottomFace;
Plane RightFace;
Plane LeftFace;
Plane FarFace;
Plane NearFace;
static Frustum CreateFrustumFromCamera(const CoordinateFrame& cam, float aspect, float fovY, float zNear, float zFar);
};
}

View File

@@ -0,0 +1,16 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
using LinearAlgebra::Vector3;
class LineSegment
{
public:
LineSegment();
LineSegment(const Vector3& a, const Vector3& b);
Vector3 A;
Vector3 B;
};
}

View File

@@ -0,0 +1,48 @@
#pragma once
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polyhedron.h>
namespace J3ML::Geometry {
class OBB
{
public:
// The center position of this OBB
Vector3 pos;
// Stores half-sizes to x, y, and z directions in the local space of this OBB.
Vector3 r;
// Specifies normalized direc tion vectors for the local axes
Vector3 axis[3];
OBB() {}
OBB(const Vector3& pos, const Vector3& radii, const Vector3& axis0, const Vector3& axis1, const Vector3& axis2);
OBB(const Geometry::AABB& aabb);
inline static int NumFaces() { return 6; }
inline static int NumEdges() { return 12; }
inline static int NumVertices() { return 8; }
Polyhedron ToPolyhedron() const;
Geometry::AABB MinimalEnclosingAABB() const;
Sphere MinimalEnclosingSphere() const;
Sphere MaximalContainedSphere() const;
Vector3 Size() const;
Vector3 HalfSize() const;
Vector3 Diagonal() const;
Vector3 HalfDiagonal() const;
bool IsFinite() const;
bool IsDegenerate() const;
Vector3 CenterPoint() const;
Vector3 Centroid() const;
Vector3 AnyPointFast() const;
float Volume();
float SurfaceArea();
Geometry::LineSegment Edge(int edgeIndex) const;
Vector3 CornerPoint(int cornerIndex) const;
};
}

View File

@@ -0,0 +1,17 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Vector3;
class Plane
{
public:
Vector3 Position;
Vector3 Normal;
float distance = 0.f;
};
}

View File

@@ -0,0 +1,7 @@
#pragma once
namespace J3ML::Geometry {
class Polygon {
};
}

View File

@@ -0,0 +1,8 @@
#pragma once
namespace J3ML::Geometry
{
class Polyhedron {
};
}

View File

@@ -0,0 +1,369 @@
#pragma once
#include <vector>
#include <cstdint>
#include <J3ML/LinearAlgebra/Vector2.h>
#include "AABB2D.h"
namespace J3ML::Geometry {
using LinearAlgebra::Vector2;
template<typename T>
class QuadTree {
/// A fixed split rule for all QuadTrees: A QuadTree leaf node is only ever split if the leaf contains at least this many objects.
/// Leaves containing fewer than this many objects are always kept as leaves until the object count is exceeded.
constexpr static const int minQuadTreeNodeObjectCount = 16;
/// A fixed split limit rule for all QuadTrees: If the QuadTree node side length is smaller than this, the node will
/// never be split again into smaller subnodes. This provides a hard limit safety net for infinite/extra long recursion
/// in case multiple identical overlapping objects are placed into the tree.
constexpr static const float minQuadTreeQuadrantSize = 0.05f;
public:
struct Node {
Node *parent;
uint32_t childIndex;
std::vector<T> objects;
Vector2 center;
Vector2 radius;
bool IsLeaf() const { return childIndex == 0xFFFFFFFF; }
uint32_t TopLeftChildIndex() const { return childIndex; }
uint32_t TopRightChildIndex() const { return childIndex + 1; }
uint32_t BottomLeftChildIndex() const { return childIndex + 2; }
uint32_t BottomRightChildIndex() const { return childIndex + 3; }
/// This assumes that the QuadTree contains unique objects and never duplicates
void Remove(const T &object) {
for (size_t i = 0; i < objects.size(); ++i) {
if (objects[i] == object) {
AssociateQuadTreeNode(object,
0); // Mark in the object that it has been removed from the QuadTree.
std::swap(objects[i], objects.back());
objects.pop_back();
return;
}
}
}
AABB2D ComputeAABB() {}
float DistanceSq(const Vector2 &point) const {
Vector2 centered = point - center;
Vector2 closestPoint = centered.Clamp(-radius, radius);
return closestPoint.DistanceSq(centered);
}
};
// Helper struct used when traversing through the tree
struct TraversalStackItem {
Node *node;
};
QuadTree() :
rootNodeIndex(-1),
boundingAABB(Vector2(0, 0), Vector2(0, 0)) {
// TODO: currently storing persistent raw pointers to this array outside the array
nodes.reserve(200000);
}
/// Removes all nodes and objects in this tree and reintializes the tree to a single root node.
void Clear(const Vector2 &minXY = Vector2(-1, -1), const Vector2 &maxXY = Vector2(1, 1));
/// Places the given object onto the proper (leaf) node of the tree. After placing, if the leaf split rule is
/// satisfied, subdivides the leaf node into 4 subquadrants and reassings the objects to the new leaves.
void Add(const T &object);
/// Removes the given object from this tree.
/// To call this function, you must define a function QuadTree<T>::Node *GetQuadTreeNode(const T& object)
/// which returns the node of this quadtree where the object resides in.
void Remove(const T &object);
/// @return The bounding rectangle for the whole tree.
/// @note This bounding rectangle does not tightly bound the objects themselves, only the root node of the tree.
AABB2D BoundingAABB() const { return boundingAABB; }
/// @return The topmost node in the tree.
Node *Root();
const Node *Root() const;
/// Returns the total number of nodes (all nodes, i.e. inner nodes + leaves) in the tree.
/// Runs in constant time.
int NumNodes() const;
/// Returns the total number of leaf nodes in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumLeaves() const;
/// Returns the total number of inner nodes in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumInnerNodes() const;
/// Returns the total number of objects stored in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumObjects() const;
/// Returns the maximum height of the whole tree (the path from the root to the farthest leaf node).
int TreeHeight() const;
/// Returns the height of the subtree rooted at 'node'.
int TreeHeight(const Node *node) const;
/// Performs an AABB intersection query in this Quadtreee, and calls the given callback function for each non-empty
/// node of the tree which intersects the given AABB.
/** @param aabb The axis-aligned bounding box to intersect this QuadTree with.
@param callback A function or a function object of prototype
bool callbackFunction(QuadTree<T> &tree, const AABB2D &queryAABB, QuadTree<T>::Node &node);
If the callback function returns true, the execution of the query is stopped and this function immediately
returns afterwards. If the callback function returns false, the execution of the query continues. */
template<typename Func>
inline void AABBQuery(const AABB2D &aabb, Func &callback);
/// Finds all object pairs inside the given AABB which have colliding AABBs. For each such pair, calls the
/// specified callback function.
template<typename Func>
inline void CollidingPairsQuery(const AABB2D &aabb, Func &callback);
/// Performs various consistency checks on the given node. Use only for debugging purposes.
void DebugSanityCheckNode(Node *n);
private:
void Add(const T &object, Node *n);
/// Allocates a sequential 4-tuple of QuadtreeNodes, contiguous in memory.
int AllocateNodeGroup(Node *parent);
void SplitLeaf(Node *leaf);
std::vector<Node> nodes;
int rootNodeIndex;
AABB2D boundingAABB;
void GrowRootTopLeft();
void GrowRootTopRight();
void GrowRootBottomLeft();
void GrowRootBottomRight();
void GrowImpl(int quadrantForRoot);
};
// NOTE: Keep members defined here. Template-parameterized classes
// can't be split across header and implementation files
// but the presence of the implementation file is a requirement
template<typename T>
void QuadTree<T>::Clear(const Vector2 &minXY, const Vector2 &maxXY) {
nodes.clear();
boundingAABB.minPoint = minXY;
boundingAABB.maxPoint = maxXY;
rootNodeIndex = AllocateNodeGroup(0);
Node *root = Root();
root->center = (minXY + maxXY) * 0.5f;
root->radius = maxXY - root->center;
}
template<typename T>
void QuadTree<T>::Add(const T &object) {
Node *n = Root();
AABB2D objectAABB = GetAABB2D(object);
// Ramen Noodle Bowls of nested if statements are generally bad practice
// Unfortunately, sometimes the problem domain makes this unavoidable
if (objectAABB.minPoint.x >= boundingAABB.minPoint.x) {
// object fits left.
if (objectAABB.maxPoint.x <= boundingAABB.maxPoint.x) {
// object fits left and right.
if (objectAABB.minPoint.y >= boundingAABB.minPoint.y) {
// Object fits left, right, and top.
if (objectAABB.maxPoint.y <= boundingAABB.maxPoint.y) {
// Object fits the whole root AABB. Can safely add into the existing tree size.
AddObject(object, n);
return;
} else {
// Object fits left, right, and top, but not bottom.
GrowRootBottomRight(); // Could grow bottom-left as well, wouldn't matter here.
}
} else {
// Object fits left and right, but not to top.
GrowRootTopRight(); // Could grow top-left as well, wouldn't matter here.
}
} else {
// Object fits left, but not to right. We must grow right. Check whether to grow top or bottom;
if (objectAABB.minPoint.y < boundingAABB.minPoint.y)
GrowRootTopRight();
else
GrowRootBottomRight();
}
} else {
// We must grow left. Check whether to grow top or bottom.
if (objectAABB.minPoint.y < boundingAABB.minPoint.y)
GrowRootTopLeft();
else
GrowRootBottomLeft();
}
// Now that we have grown the tree root node, try adding again.
Add(object);
}
template<typename T>
void QuadTree<T>::Remove(const T &object) {
Node *n = GetQuadTreeNode(object);
if (n) {
n->Remove(object);
}
}
template<typename T>
void QuadTree<T>::Add(const T &object, Node *n) {
for (;;) {
// Traverse the QuadTree to decide which quad to place this object on.
float left = n->center.x - MinX(object); // If left > 0.f, then the object overlaps with the left quadrant.
float right = MaxX(object) - n->center.x; // If right > 0.f, then the object overlaps with the right quadrant.
float top = n->center.y - MinY(object); // If top > 0.f, then the object overlaps with the top quadrant
float bottom =
MaxY(object) - n->center.y; // If bottom > 0.f, then the object overlaps with the bottom quadrant
float leftAndRight = std::min(left, right); // If > 0.f, then the object straddles left-right halves.
float topAndBottom = std::min(top, bottom); // If > 0.f, then the object straddles top-bottom halves.
float straddledEitherOne = std::max(leftAndRight,
topAndBottom); // If > 0.f, thne the object is in two or more quadrants.
// Note: It can happen that !left && !right, or !top && !bottom.
// but the if()s are setup below so that right/bottom is taken if no left/top, so that is ok.
// We must put the object onto this node if
// a) the object straddled the parent->child split lines.
// b) this object is a leaf
if (straddledEitherOne > 0.f) {
n->objects.push_back(object);
AssociateQuadTreeNode(object, n);
return;
}
if (n->IsLeaf()) {
n->objects.push_back(object);
AssociateQuadTreeNode(object, n);
if ((int) n->objects.size() > minQuadTreeNodeObjectCount &&
std::min(n->radius.x, n->radius.y) >= minQuadTreeQuadrantSize) {
SplitLeaf(n);
}
return;
}
if (left > 0.f) {
if (top > 0.f) {
n = &nodes[n->TopLeftChildIndex()];
} else {
n = &nodes[n->BottomLeftChildIndex()];
}
} else {
if (top > 0.f) {
n = &nodes[n->TopRightChildIndex()];
} else {
n = &nodes[n->BottomRightChildIndex()];
}
}
}
}
template<typename T>
typename QuadTree<T>::Node *QuadTree<T>::Root() {
return nodes.empty() ? 0 : &nodes[rootNodeIndex];
}
template<typename T>
const typename QuadTree<T>::Node *QuadTree<T>::Root() const {
return nodes.empty() ? 0 : &nodes[rootNodeIndex];
}
template <typename T>
int QuadTree<T>::AllocateNodeGroup(Node* parent) {
size_t oldCap = nodes.capacity();
int index = (int)nodes.size();
Node n;
n.parent = parent;
n.childIndex = 0xFFFFFFFF;
if (parent) {
n.radius = parent->radius * 0.5f;
n.center = parent->center - n.radius;
}
nodes.push_back(n);
if (parent)
n.center.x = parent->center.x + n.radius.x;
nodes.push_back(n);
if (parent) {
n.center.x = parent->center.x - n.radius.x;
n.center.y = parent->center.y + n.radius.y;
}
nodes.push_back(n);
if (parent)
n.center.x = parent->center.x + n.radius.x;
nodes.push_back(n);
return index;
}
template <typename T>
void QuadTree<T>::SplitLeaf(Node *leaf) {
leaf->childIndex = AllocateNodeGroup(leaf);
size_t i = 0;
while (i < leaf->objects.size()) {
const T& object = leaf->objects[i];
// Traverse the QuadTree to decide which quad to place this object into
float left = leaf->center.x - MinX(object);
float right = MaxX(object) - leaf->center;
float top = leaf->center.y - MinY(object);
float bottom = MaxY(object) - leaf->center.y;
float leftAndRight = std::min(left, right);
float topAndBottom = std::min(top, bottom);
float straddledEitherOne = std::max(leftAndRight, topAndBottom);
if (straddledEitherOne > 0.f) {
++i;
continue;
}
if (left > 0.f) {
if (top > 0.f) {
Add(object, &nodes[leaf->TopLeftChildIndex()]);
} else {
Add(object, &nodes[leaf->BottomLeftChildIndex()]);
}
} else {
if (top > 0.f) {
Add(object, &nodes[leaf->TopRightChildIndex()]);
} else {
Add(object, &nodes[leaf->BottomRightChildIndex()]);
}
}
// Remove the object we added to a child from this node.
leaf->objects[i] = leaf->objects.back();
leaf->objects.pop_back();
}
}
}

View File

@@ -0,0 +1,17 @@
//
// Created by dawsh on 1/25/24.
//
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
using LinearAlgebra::Vector3;
class Ray
{
Vector3 Origin;
Vector3 Direction;
};
}

View File

@@ -0,0 +1,70 @@
#pragma once
#include <J3ML/Geometry.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/TriangleMesh.h>
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Matrix3x3;
using J3ML::LinearAlgebra::Matrix4x4;
// A mathematical representation of a 3-dimensional sphere
class Sphere
{
public:
Vector3 Position;
float Radius;
Sphere() {}
Sphere(const Vector3& pos, float radius) : Position(pos), Radius(radius) {}
void Translate(const Vector3& offset)
{
Position = Position + offset;
}
void Transform(const Matrix3x3& transform)
{
Position = transform * Position;
}
void Transform(const Matrix4x4& transform)
{
Position = transform * Position;
}
inline float Cube(float inp) const
{
return inp*inp*inp;
}
float Volume() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
float SurfaceArea() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
bool IsFinite() const
{
return Position.IsFinite() && std::isfinite(Radius);
}
bool IsDegenerate()
{
return !(Radius > 0.f) || !Position.IsFinite();
}
bool Contains(const Vector3& point) const
{
return Position.DistanceSquared(point) <= Radius*Radius;
}
bool Contains(const Vector3& point, float epsilon) const
{
return Position.DistanceSquared(point) <= Radius*Radius + epsilon;
}
bool Contains(const LineSegment& lineseg) const
{
}
TriangleMesh GenerateUVSphere() const {}
TriangleMesh GenerateIcososphere() const {}
};
}

View File

@@ -0,0 +1,9 @@
#pragma once
namespace J3ML::Geometry
{
class Triangle
{
};
}

View File

@@ -0,0 +1,10 @@
#pragma once
namespace J3ML::Geometry
{
class Shape2D {};
class Triangle2D {
public:
};
}

View File

@@ -0,0 +1,9 @@
#pragma once
namespace J3ML::Geometry
{
class TriangleMesh
{
};
}

View File

@@ -1,8 +1,241 @@
#pragma once
//
// Created by josh on 12/25/2023.
//
#include <cstdint>
#include <cmath>
#include <stdfloat>
#include <string>
#include <cassert>
#ifndef J3ML_J3ML_H
#define J3ML_J3ML_H
namespace J3ML::SizedIntegralTypes
{
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
#endif //J3ML_J3ML_H
using s8 = int8_t;
using s16 = int16_t;
using s32 = int32_t;
using s64 = int64_t;
using s128 = __int128_t;
}
namespace J3ML::SizedFloatTypes
{
using f32 = float;
using f64 = double;
using f128 = long double;
}
using namespace J3ML::SizedIntegralTypes;
using namespace J3ML::SizedFloatTypes;
namespace J3ML::Math
{
// Coming soon: Units Namespace
// For Dimensional Analysis
/*
namespace Units
{
struct Unit {};
struct Meters : public Unit { };
struct ImperialInches : public Unit {};
struct Time : public Unit {};
struct Grams : public Unit {};
struct MetersPerSecond : public Unit {};
template <typename TUnit>
struct Quantity
{
public:
float Value;
};
struct Mass : public Quantity<Grams> {};
struct Length : public Quantity<Meters> { };
struct Velocity : public Quantity<MetersPerSecond>{ };
class MetrixPrefix
{
public:
std::string Prefix;
std::string Symbol;
int Power;
float InverseMultiply(float input) const
{
return std::pow(input, -Power);
}
float Multiply(float input) const
{
return std::pow(input, Power);
}
};
namespace Prefixes
{
static constexpr MetrixPrefix Tera {"tera", "T", 12};
static constexpr MetrixPrefix Giga {"giga", "G", 9};
static constexpr MetrixPrefix Mega {"mega", "M", 6};
static constexpr MetrixPrefix Kilo {"kilo", "k", 3};
static constexpr MetrixPrefix Hecto {"hecto", "h", 2};
static constexpr MetrixPrefix Deca {"deca", "da", 1};
static constexpr MetrixPrefix None {"", "", 0};
static constexpr MetrixPrefix Deci {"", "", 0};
static constexpr MetrixPrefix Centi {"", "", 0};
static constexpr MetrixPrefix Milli {"", "", 0};
static constexpr MetrixPrefix Micro {"", "", 0};
static constexpr MetrixPrefix Nano {"", "", 0};
static constexpr MetrixPrefix Pico {"", "", 0};
}
Length operator ""_meters(long double value)
{
return {(float)value};
}
Length operator ""_m(long double value)
{
return {(float)value};
}
constexpr Length operator ""_kilometers(long double value)
{
return Length {(float)value};
}
Length operator ""_km(long double value)
{
return {(float)value};
}
Length operator ""_centimeters(long double value)
{
return {(float)value};
}
Length operator ""_cm(long double value)
{
return {(float)value};
}
Length operator ""_millimeters(long double value)
{
return {(float)value};
}
Length operator ""_mm(long double value)
{
return {(float)value};
}
Velocity operator ""_mps(long double value)
{
return {(float)value};
}
Velocity operator ""_meters_per_second(long double value)
{
return {(float)value};
}
Velocity operator ""_kmps(long double value)
{
return {(float)value};
}
}*/
#pragma region Constants
static const float Pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679f;
static const float RecipSqrt2Pi = 0.3989422804014326779399460599343818684758586311649346576659258296706579258993018385012523339073069364f;
static const float GoldenRatio = 1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375f;
#pragma endregion
#pragma region Math Functions
inline float Radians(float degrees);
inline float Degrees(float radians);
struct NumberRange
{
float LowerBound;
float UpperBound;
};
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);
/// Linearly interpolates from a to b, under the modulus mod.
/// This function takes evaluates a and b in the range [0, mod] and takes the shorter path to reach from a to b.
inline float LerpMod(float a, float b, float mod, float t);
/// Computes the lerp factor a and b have to be Lerp()ed to get x.
inline float InverseLerp(float a, float b, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509665(v=VS.85).aspx
inline float Step(float y, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509658(v=vs.85).aspx
inline float Ramp(float min, float max, float x);
inline float PingPongMod(float x, float mod);
inline float Sqrt(float x);
inline float FastSqrt(float x);
/// Returns 1/Sqrt(x). (The reciprocal of the square root of x)
inline float RSqrt(float x);
inline float FastRSqrt(float x);
#pragma endregion
namespace BitTwiddling
{
/// Parses a string of form "011101010" to a u32
u32 BinaryStringToValue(const char* s);
/// Returns the number of 1's set in the given value.
inline int CountBitsSet(u32 value);
}
namespace Interp
{
inline float SmoothStart(float t);
}
struct Rotation
{
public:
Rotation();
Rotation(float value);
float valueInRadians;
float ValueInRadians() const;
float ValueInDegrees() const;
Rotation operator+(const Rotation& rhs);
};
Rotation operator ""_rad(long double rads);
Rotation operator ""_radians(long double rads);
Rotation operator ""_deg(long double rads);
Rotation operator ""_degrees(long double rads);
}

View File

@@ -1,76 +1,30 @@
//// Dawsh Linear Algebra Library - Everything you need for 3D math
/// @file LinearAlgebra.h
/// @description Includes all LinearAlgebra classes and functions
/// @author Josh O'Leary, William Tomasine II
/// @copyright 2024 Redacted Software
/// @license Unlicense - Public Domain
/// @revision 1.3
/// @edited 2024-02-26
#pragma once
#include <cstdint>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <functional>
namespace Math
{
const float Pi = M_PI;
inline float Radians(float degrees) { return degrees * (Pi/180.f); }
inline float Degrees(float radians) { return radians * (180.f/Pi); }
struct NumberRange
{
float LowerBound;
float UpperBound;
};
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);
}
// Dawsh Linear Algebra Library - Everything you need for 3D math
namespace LinearAlgebra {
class Vector2; // A type representing a position in a 2-dimensional coordinate space.
class Vector3; // A type representing a position in a 3-dimensional coordinate space.
class Vector4; // A type representing a position in a 4-dimensional coordinate space.
class Angle2D; // Uses x,y components to represent a 2D rotation.
class EulerAngle; // Uses pitch,yaw,roll components to represent a 3D orientation.
class AxisAngle; //
class CoordinateFrame; //
class Matrix2x2;
class Matrix3x3;
class Matrix4x4;
class Transform2D;
class Transform3D;
class Quaternion;
using Position = Vector3;
}
// TODO: Enforce Style Consistency (Function Names use MicroSoft Case)
// Note: Josh Linear Algebra Types are designed as Immutable Data Types
// x, y, z, w, etc. values should not and can not be set directly.
// rather, you just construct a new type and assign it.
// This might sound ass-backwards for many object types.
// But mathematically, a vector or matrix is defined by it's size, and values.
// Changing the value of one axis fundamentally changes the definition of the vector/matrix.
// So we enforce this conceptually at code level...
// If you're wondering how it remains performant, it only heap-allocates a tiny space (4*n bytes for vectors) (4*n*m bytes for matrices)
// Just Trust Me Bro - Josjh
#define MUTABLE true // Toggle This For: Ugly math, ugly code, and an ugly genital infection!
#if MUTABLE
#define IMMUTABLE !MUTABLE
#endif
namespace LinearAlgebra
{
// TODO: Implement Templated Linear Algebra
// Library Code //
#include "J3ML/LinearAlgebra/Vector2.h"
#include "J3ML/LinearAlgebra/Vector3.h"
#include "J3ML/LinearAlgebra/Vector4.h"
#include "J3ML/LinearAlgebra/Quaternion.h"
#include "J3ML/LinearAlgebra/AxisAngle.h"
#include "J3ML/LinearAlgebra/EulerAngle.h"
#include "J3ML/LinearAlgebra/Matrix2x2.h"
#include "J3ML/LinearAlgebra/Matrix3x3.h"
#include "J3ML/LinearAlgebra/Matrix4x4.h"
#include "J3ML/LinearAlgebra/Transform2D.h"
#include "J3ML/LinearAlgebra/CoordinateFrame.h"
}
using namespace J3ML::LinearAlgebra;

View File

@@ -1,14 +1,22 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
class Angle2D {
public:
float x;
float y;
Angle2D(Math::Rotation rads);
Angle2D(float X, float Y)
{
x = X;
y = Y;
}
bool operator==(const Angle2D& rhs) const {
return (this->x==rhs.x && this->y==rhs.y);
}
};
}

View File

@@ -1,9 +1,11 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/EulerAngle.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace LinearAlgebra
namespace J3ML::LinearAlgebra
{
/// Transitional datatype, not useful for internal representation of rotation
@@ -13,6 +15,12 @@ namespace LinearAlgebra
float angle;
public:
AxisAngle();
AxisAngle(const Vector3& axis, float angle);
AxisAngle(const Vector3 &axis, float angle);
EulerAngle ToEulerAngleXYZ() const;
Quaternion ToQuaternion() const;
static AxisAngle FromEulerAngleXYZ(const EulerAngle&);
};
}

View File

@@ -0,0 +1,28 @@
#pragma once
// Forward Declarations for classes that include each other
namespace J3ML::LinearAlgebra
{
class Vector2; // A type representing a position in a 2-dimensional coordinate space.
class Vector3; // A type representing a position in a 3-dimensional coordinate space.
class Vector4; // A type representing a position in a 4-dimensional coordinate space.
class Angle2D; // Uses x,y components to represent a 2D rotation.
class EulerAngle; // Uses pitch,yaw,roll components to represent a 3D orientation.
class AxisAngle; //
class CoordinateFrame; //
class Matrix2x2;
class Matrix3x3;
class Matrix4x4;
class Transform2D;
class Transform3D;
class Quaternion;
using Position = Vector3;
}
// Methods required by LinearAlgebra types
namespace J3ML::LinearAlgebra
{
}

View File

@@ -1,20 +1,17 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
namespace LinearAlgebra
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra
{
/// The CFrame is fundamentally 4 vectors (position, forward, right, up vector)
class CoordinateFrame
{
Vector3 getPosition();
Vector3 getLookVector();
Vector3 getRightVector();
Vector3 getUpVector();
AxisAngle GetAxisAngle();
EulerAngle GetEulerAngleXYZ();
EulerAngle GetWorldAngleYZX();
public:
Vector3 Position;
Vector3 Front;
Vector3 Right;
Vector3 Up;
};
}

View File

@@ -1,8 +1,12 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace LinearAlgebra {
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
namespace J3ML::LinearAlgebra {
class AxisAngle;
// Essential Reading:
// http://www.essentialmath.com/GDC2012/GDC2012_JMV_Rotations.pdf
@@ -11,8 +15,13 @@ public:
EulerAngle();
EulerAngle(float pitch, float yaw, float roll);
EulerAngle(const Vector3& vec) : pitch(vec.x), yaw(vec.y), roll(vec.z) {}
static EulerAngle FromRadians(float radians);
static EulerAngle FromDegrees(float degrees);
AxisAngle ToAxisAngle() const;
explicit EulerAngle(const Quaternion& orientation);
explicit EulerAngle(const AxisAngle& orientation);
/// TODO: Implement separate upper and lower bounds
/// Preserves internal value of euler angles, normalizes and clamps the output.
/// This does not solve gimbal lock!!!

View File

@@ -1,9 +1,9 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector2.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
class Matrix2x2 {
public:
enum { Rows = 3 };
@@ -12,10 +12,20 @@ namespace LinearAlgebra {
static const Matrix2x2 Identity;
static const Matrix2x2 NaN;
Matrix2x2() {}
Matrix2x2(float val);
Matrix2x2(float m00, float m01, float m10, float m11);
Matrix2x2(const Vector2& r1, const Vector2& r2);
Vector2 GetRow(int index) const;
Vector2 GetColumn(int index) const;
float At(int x, int y) const;
float Determinant() const;
Matrix2x2 Inverse() const;
Matrix2x2 Transpose() const;
Vector2 Transform(const Vector2& rhs) const;
Vector2 operator * (const Vector2& rhs) const;
Matrix2x2 operator * (const Matrix2x2 &rhs) const;

View File

@@ -1,11 +1,15 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
class Quaternion;
/// A 3-by-3 matrix for linear transformations of 3D geometry.
/* This can represent any kind of linear transformations of 3D geometry, which include
* rotation, scale, shear, mirroring, and orthographic projection.
@@ -43,12 +47,25 @@ namespace LinearAlgebra {
Vector3 GetRow(int index) const;
Vector3 GetColumn(int index) const;
float &At(int row, int col);
float At(int x, int y) const;
/// Creates a new M3x3 that rotates about the given axis by the given angle
static Matrix3x3 RotateAxisAngle(const Vector3& rhs);
void SetRotatePart(const Vector3& a, float angle);
static Matrix3x3 RotateFromTo(const Vector3& source, const Vector3& direction);
/// Creates a new M3x3 that rotates about the given axis by the given angle
static Matrix3x3 RotateAxisAngle(const Vector3& axis, float angleRadians);
static Matrix3x3 RotateFromTo(const Vector3& source, const Vector3& direction)
{
}
void SetRow(int i, const Vector3 &vector3);
void SetColumn(int i, const Vector3& vector);
void SetAt(int x, int y, float value);
void Orthonormalize(int c0, int c1, int c2);
static Matrix3x3 LookAt(const Vector3& forward, const Vector3& target, const Vector3& localUp, const Vector3& worldUp);
@@ -62,14 +79,14 @@ namespace LinearAlgebra {
// Transforming a vector v using this matrix computes the vector
// v' == M * v == R*S*v == (R * (S * v)) which means the scale operation
// is applied to the vector first, followed by rotation, and finally translation
static Matrix3x3 FromRS(const Quaternion& rotate, const Matrix3x3& scale);
static Matrix3x3 FromRS(const Matrix3x3 &rotate, const Matrix3x3& scale);
static Matrix3x3 FromRS(const Quaternion& rotate, const Vector3& scale);
static Matrix3x3 FromRS(const Matrix3x3 &rotate, const Vector3& scale);
/// Creates a new transformation matrix that scales by the given factors.
// This matrix scales with respect to origin.
static Matrix3x3 Scale(float sx, float sy, float sz);
static Matrix3x3 Scale(const Matrix3x3& scale);
static Matrix3x3 FromScale(float sx, float sy, float sz);
static Matrix3x3 FromScale(const Vector3& scale);
/// Returns the main diagonal.
Vector3 Diagonal() const;
@@ -99,13 +116,15 @@ namespace LinearAlgebra {
Matrix3x3 Transpose() const;
// Transforms the given vectors by this matrix M, i.e. returns M * (x,y,z)
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(const Vector3& rhs) const;
Matrix3x3 ScaleBy(const Vector3& rhs);
Vector3 GetScale() const;
Vector3 operator[](int row) const;
Vector3 operator[] (float index) const;
Vector3 operator * (const Vector3& rhs) const;
Matrix3x3 operator * (const Matrix3x3& rhs) const;

View File

@@ -1,34 +1,254 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Common.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <algorithm>
namespace J3ML::LinearAlgebra {
namespace LinearAlgebra {
/// A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
/* This matrix can represent the most generic form of transformations for 3D objects,
* including perspective projections, which a 4-by-3 cannot store,
* and translations, which a 3-by-3 cannot represent.
* The elements of this matrix are
* m_00, m_01, m_02, m_03
* m_10, m_11, m_12, m_13
* m_20, m_21, m_22, m_23,
* m_30, m_31, m_32, m_33
*
* The element m_yx is the value on the row y and column x.
* You can access m_yx using the double-bracket notation m[y][x]
*/
/* This matrix can represent the most generic form of transformations for 3D objects,
* including perspective projections, which a 4-by-3 cannot store,
* and translations, which a 3-by-3 cannot represent.
* The elements of this matrix are
* m_00, m_01, m_02, m_03
* m_10, m_11, m_12, m_13
* m_20, m_21, m_22, m_23,
* m_30, m_31, m_32, m_33
*
* The element m_yx is the value on the row y and column x.
* You can access m_yx using the double-bracket notation m[y][x]
*/
class Matrix4x4 {
public:
// TODO: Implement assertions to ensure matrix bounds are not violated!
enum { Rows = 4 };
enum { Cols = 4 };
/// A constant matrix that has zeroes in all its entries
static const Matrix4x4 Zero;
/// A constant matrix that is the identity.
static const Matrix4x4 Identity;
Vector3 GetTranslationComponent() const;
Matrix3x3 GetRotationComponent() const;
/// A compile-time constant float4x4 which has NaN in each element.
/// For this constant, each element has the value of quet NaN, or Not-A-Number.
/// Never compare a matrix to this value. Due to how IEEE floats work, "nan == nan" returns false!
static const Matrix4x4 NaN;
/// Creates a new float4x4 with uninitialized member values.
Matrix4x4() {}
Matrix4x4(float val);
/// Constructs this float4x4 to represent the same transformation as the given float3x3.
/** This function expands the last row and column of this matrix with the elements from the identity matrix. */
Matrix4x4(const Matrix3x3&);
/// Constructs a new float4x4 by explicitly specifying all the matrix elements.
/// The elements are specified in row-major format, i.e. the first row first followed by the second and third row.
/// E.g. The element _10 denotes the scalar at second (index 1) row, first (index 0) column.
Matrix4x4(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33);
/// Constructs the matrix by explicitly specifying the four column vectors.
/** @param col0 The first column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local X axis.
@param col1 The second column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local Y axis.
@param col2 The third column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local Z axis.
@param col3 The fourth column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
position of the local space pivot. */
Matrix4x4(const Vector4& r1, const Vector4& r2, const Vector4& r3, const Vector4& r4);
explicit Matrix4x4(const Quaternion& orientation);
/// Constructs this float4x4 from the given quaternion and translation.
/// Logically, the translation occurs after the rotation has been performed.
Matrix4x4(const Quaternion& orientation, const Vector3 &translation);
/// Creates a LookAt matrix from a look-at direction vector.
/** A LookAt matrix is a rotation matrix that orients an object to face towards a specified target direction.
@param localForward Specifies the forward direction in the local space of the object. This is the direction
the model is facing at in its own local/object space, often +X (1,0,0), +Y (0,1,0) or +Z (0,0,1). The
vector to pass in here depends on the conventions you or your modeling software is using, and it is best
pick one convention for all your objects, and be consistent.
This input parameter must be a normalized vector.
@param targetDirection Specifies the desired world space direction the object should look at. This function
will compute a rotation matrix which will rotate the localForward vector to orient towards this targetDirection
vector. This input parameter must be a normalized vector.
@param localUp Specifies the up direction in the local space of the object. This is the up direction the model
was authored in, often +Y (0,1,0) or +Z (0,0,1). The vector to pass in here depends on the conventions you
or your modeling software is using, and it is best to pick one convention for all your objects, and be
consistent. This input parameter must be a normalized vector. This vector must be perpendicular to the
vector localForward, i.e. localForward.Dot(localUp) == 0.
@param worldUp Specifies the global up direction of the scene in world space. Simply rotating one vector to
coincide with another (localForward->targetDirection) would cause the up direction of the resulting
orientation to drift (e.g. the model could be looking at its target its head slanted sideways). To keep
the up direction straight, this function orients the localUp direction of the model to point towards the
specified worldUp direction (as closely as possible). The worldUp and targetDirection vectors cannot be
collinear, but they do not need to be perpendicular either.
@return A matrix that maps the given local space forward direction vector to point towards the given target
direction, and the given local up direction towards the given target world up direction. The returned
matrix M is orthonormal with a determinant of +1. For the matrix M it holds that
M * localForward = targetDirection, and M * localUp lies in the plane spanned by the vectors targetDirection
and worldUp.
@note The position of (the translation performed by) the resulting matrix will be set to (0,0,0), i.e. the object
will be placed to origin. Call SetTranslatePart() on the resulting matrix to set the position of the model.
@see RotateFromTo(). */
static Matrix4x4 LookAt(const Vector3& localFwd, const Vector3& targetDir, const Vector3& localUp, const Vector3& worldUp);
/// Returns the translation part.
/** The translation part is stored in the fourth column of this matrix.
This is equivalent to decomposing this matrix in the form M = T * M', i.e. this translation is applied last,
after applying rotation and scale. If this matrix represents a local->world space transformation for an object,
then this gives the world space position of the object.
@note This function assumes that this matrix does not contain projection (the fourth row of this matrix is [0 0 0 1]). */
Vector3 GetTranslatePart() const;
/// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation).
Matrix3x3 GetRotatePart() const;
void SetTranslatePart(float translateX, float translateY, float translateZ);
void SetTranslatePart(const Vector3& offset);
void SetRotatePart(const Quaternion& q);
void Set3x3Part(const Matrix3x3& r);
void SetRow(int row, const Vector3& rowVector, float m_r3);
void SetRow(int row, const Vector4& rowVector);
void SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3);
Vector4 GetRow(int index) const;
Vector4 GetColumn(int index) const;
Vector3 GetRow3(int index) const;
Vector3 GetColumn3(int index) const;
Vector3 GetScale() const
{
}
Matrix4x4 Scale(const Vector3&);
float &At(int row, int col);
float At(int x, int y) const;
template <typename T>
void Swap(T &a, T &b)
{
T temp = std::move(a);
a = std::move(b);
b = std::move(temp);
}
void SwapColumns(int col1, int col2);
/// Swaps two rows.
void SwapRows(int row1, int row2);
/// Swapsthe xyz-parts of two rows element-by-element
void SwapRows3(int row1, int row2);
void ScaleRow(int row, float scalar);
void ScaleRow3(int row, float scalar);
void ScaleColumn(int col, float scalar);
void ScaleColumn3(int col, float scalar);
/// Algorithm from Eric Lengyel's Mathematics for 3D Game Programming & Computer Graphics, 2nd Ed.
void Pivot();
/// Tests if this matrix does not contain any NaNs or infs.
/** @return Returns true if the entries of this float4x4 are all finite, and do not contain NaN or infs. */
bool IsFinite() const;
/// Tests if this matrix has an inverse.
/** @return Returns true if this matrix can be inverted, up to the given epsilon. */
bool IsInvertible(float epsilon = 1e-3f) const;
Vector4 Diagonal() const;
Vector3 Diagonal3() const;
/// Returns the local +X axis in world space.
/// This is the same as transforming the vector (1,0,0) by this matrix.
Vector3 WorldX() const;
/// Returns the local +Y axis in world space.
/// This is the same as transforming the vector (0,1,0) by this matrix.
Vector3 WorldY() const;
/// Returns the local +Z axis in world space.
/// This is the same as transforming the vector (0,0,1) by this matrix.
Vector3 WorldZ() const;
/// Accesses this structure as a float array.
/// @return A pointer to the upper-left element. The data is contiguous in memory.
/// ptr[0] gives the element [0][0], ptr[1] is [0][1], ptr[2] is [0][2].
/// ptr[4] == [1][0], ptr[5] == [1][1], ..., and finally, ptr[15] == [3][3].
float *ptr() { return &elems[0][0]; }
const float *ptr() const { return &elems[0][0]; }
float Determinant3x3() const;
/// Computes the determinant of this matrix.
// If the determinant is nonzero, this matrix is invertible.
float Determinant() const;
#define SKIPNUM(val, skip) (val >= skip ? (val+1) : val)
float Minor(int i, int j) const;
Matrix4x4 Inverse() const;
Matrix4x4 Transpose() const;
Vector2 Transform(float tx, float ty) const;
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(float tx, float ty, float tz) const;
Vector3 Transform(const Vector3& rhs) const;
Vector4 Transform(float tx, float ty, float tz, float tw) const;
Vector4 Transform(const Vector4& rhs) const;
Matrix4x4 Translate(const Vector3& rhs) const;
static Matrix4x4 FromTranslation(const Vector3& rhs);
static Matrix4x4 D3DOrthoProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DOrthoProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 OpenGLOrthoProjLH(float n, float f, float h, float v);
static Matrix4x4 OpenGLOrthoProjRH(float n, float f, float h, float v);
static Matrix4x4 OpenGLPerspProjLH(float n, float f, float h, float v);
static Matrix4x4 OpenGLPerspProjRH(float n, float f, float h, float v);
Vector4 operator[](int row);
Matrix4x4 operator-() const;
Matrix4x4 operator +(const Matrix4x4& rhs) const;
Matrix4x4 operator - (const Matrix4x4& rhs) const;
Matrix4x4 operator *(float scalar) const;
Matrix4x4 operator /(float scalar) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
Matrix4x4 operator * (const Matrix3x3 &rhs) const;
Matrix4x4 operator +() const;
Matrix4x4 operator * (const Matrix4x4& rhs) const;
Matrix4x4 &operator = (const Matrix3x3& rhs);
Matrix4x4 &operator = (const Quaternion& rhs);
Matrix4x4 &operator = (const Matrix4x4& rhs) = default;
Vector4 GetRow() const;
Vector4 GetColumn() const;
protected:
float elems[4][4];
};
}

View File

@@ -1,44 +1,70 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
//#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <cmath>
namespace LinearAlgebra
namespace J3ML::LinearAlgebra
{
class Quaternion : public Vector4
{
class Matrix3x3;
class Quaternion : public Vector4 {
public:
Quaternion();
Quaternion(const Quaternion& rhs) = default;
explicit Quaternion(const Matrix3x3& rotationMtrx);
explicit Quaternion(const Matrix4x4& rotationMtrx);
Quaternion(const Quaternion &rhs) = default;
explicit Quaternion(const Matrix3x3 &rotationMtrx);
explicit Quaternion(const Matrix4x4 &rotationMtrx);
// @note The input data is not normalized after construction, this has to be done manually.
Quaternion(float X, float Y, float Z, float W);
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
Quaternion(const Vector4& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween);
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween);
//void Inverse();
explicit Quaternion(Vector4 vector4);
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
Quaternion Inverse() const;
Quaternion Conjugate() const;
//void Normalize();
Vector3 GetWorldX() const;
Vector3 GetWorldY() const;
Vector3 GetWorldZ() const;
Vector3 GetAxis() const;
float GetAngle() const;
Matrix3x3 ToMatrix3x3() const;
Matrix4x4 ToMatrix4x4() const;
Matrix4x4 ToMatrix4x4(const Vector3 &translation) const;
Vector3 Transform(const Vector3& vec) const;
Vector3 Transform(float X, float Y, float Z) const;
// Note: We only transform the x,y,z components of 4D vectors, w is left untouched
@@ -57,7 +83,6 @@ namespace LinearAlgebra
// TODO: Document (But do not override!) certain math functions that are the same for Vec4
// TODO: Double Check which operations need to be overriden for correct behavior!
// Multiplies two quaternions together.
// The product q1 * q2 returns a quaternion that concatenates the two orientation rotations.
// The rotation q2 is applied first before q1.
@@ -71,12 +96,12 @@ namespace LinearAlgebra
// Divides a quaternion by another. Divison "a / b" results in a quaternion that rotates the orientation b to coincide with orientation of
Quaternion operator / (const Quaternion& rhs) const;
Quaternion operator +(const Quaternion& rhs) const;
Quaternion operator +() const;
Quaternion operator -() const;
Quaternion operator + (const Quaternion& rhs) const;
Quaternion operator + () const;
Quaternion operator - () const;
float Dot(const Quaternion &quaternion) const;
float Angle() const;
float Angle() const { return acos(w) * 2.f;}
float AngleBetween(const Quaternion& target) const;

View File

@@ -1,19 +1,40 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
class Transform2D {
protected:
Matrix3x3 transformation;
public:
const static Transform2D Identity;
const static Transform2D FlipX;
const static Transform2D FlipY;
Transform2D(float rotation, const Vector2& pos);
Transform2D(float px, float py, float sx, float sy, float ox, float oy, float kx, float ky, float rotation)
{
transformation = Matrix3x3(px, py, rotation, sx, sy, ox, oy, kx, ky);
}
Transform2D(const Vector2& pos, const Vector2& scale, const Vector2& origin, const Vector2& skew, float rotation);
Transform2D(const Matrix3x3& transform);
Transform2D Translate(const Vector2& offset) const;
Transform2D Translate(float x, float y) const;
Transform2D Scale(float scale); // Perform Uniform Scale
Transform2D Scale(float x, float y); // Perform Nonunform Scale
Transform2D Scale(float scale); // Perform Uniform Scale
Transform2D Scale(float x, float y); // Perform Nonunform Scale
Transform2D Scale(const Vector2& scales); // Perform Nonuniform Scale
Transform2D Rotate();
Vector2 Transform(const Vector2& input) const;
Transform2D Inverse() const;
Transform2D AffineInverse() const;
float Determinant() const;
Vector2 GetOrigin() const;
float GetRotation() const;
Vector2 GetScale() const;
float GetSkew() const;
Transform2D OrthoNormalize();
};
}

View File

@@ -0,0 +1,13 @@
#pragma once
template <typename T, int Dims>
class templated_vector
{
};
using v2f = templated_vector<float, 2>;
using v3f = templated_vector<float, 3>;
using v4f = templated_vector<float, 4>;

View File

@@ -1,15 +1,26 @@
#pragma clang diagnostic push
#pragma ide diagnostic ignored "modernize-use-nodiscard"
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/J3ML.h>
#include <cstddef>
namespace LinearAlgebra {
// A 2D (x, y) ordered pair.
namespace J3ML::LinearAlgebra {
using namespace J3ML;
/// A 2D (x, y) ordered pair.
class Vector2 {
public:
// Default Constructor - Initializes values to zero
enum {Dimensions = 2};
/// Default Constructor - Initializes values to zero
Vector2();
// Constructs a new Vector2 with the value (X, Y)
/// Constructs a new Vector2 with the value (X, Y)
Vector2(float X, float Y);
/// Constructs this float2 from a C array, to the value (data[0], data[1]).
explicit Vector2(const float* data);
// Constructs a new Vector2 with the value {scalar, scalar}
explicit Vector2(float scalar);
Vector2(const Vector2& rhs); // Copy Constructor
//Vector2(Vector2&&) = default; // Move Constructor
@@ -25,13 +36,36 @@ namespace LinearAlgebra {
void SetX(float newX);
void SetY(float newY);
/// Casts this float2 to a C array.
/** This function does not allocate new memory or make a copy of this float2. This function simply
returns a C pointer view to this data structure. Use ptr()[0] to access the x component of this float2
and ptr()[1] to access the y component.
@note Since the returned pointer points to this class, do not dereference the pointer after this
float2 has been deleted. You should never store a copy of the returned pointer.
@note This function is provided for compatibility with other APIs which require raw C pointer access
to vectors. Avoid using this function in general, and instead always use the operator []
or the At() function to access the elements of this vector by index.
@return A pointer to the first float element of this class. The data is contiguous in memory.
@see operator [](), At(). */
float* ptr();
const float *ptr() const;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
const float At(std::size_t index) const;
float &At(std::size_t index);
Vector2 Abs() const;
bool IsWithinMarginOfError(const Vector2& rhs, float margin=0.001f) const;
bool IsNormalized(float epsilonSq = 1e-5f) const;
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsPerpendicular(const Vector2& other, float epsilonSq=1e-5f) const;
float operator[](std::size_t index);
bool operator == (const Vector2& rhs) const;
bool operator != (const Vector2& rhs) const;
@@ -44,75 +78,98 @@ namespace LinearAlgebra {
Vector2 Clamp(const Vector2& min, const Vector2& max) const;
static Vector2 Clamp(const Vector2& min, const Vector2& middle, const Vector2& max);
// Returns the magnitude between the two vectors.
/// Returns the magnitude between the two vectors.
float Distance(const Vector2& to) const;
static float Distance(const Vector2& from, const Vector2& to);
float DistanceSq(const Vector2& to) const;
static float DistanceSq(const Vector2& from, const Vector2& to);
float MinElement() const;
float MaxElement() const;
float Length() const;
static float Length(const Vector2& of);
float LengthSquared() const;
static float LengthSquared(const Vector2& of);
// Returns the length of the vector, which is sqrt(x^2 + y^2)
/// Returns the length of the vector, which is sqrt(x^2 + y^2)
float Magnitude() const;
static float Magnitude(const Vector2& of);
// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
// For normalized vectors, dot returns 1 if they point in exactly the same direction,
// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
bool IsFinite() const;
static bool IsFinite(const Vector2& v);
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
float Dot(const Vector2& rhs) const;
static float Dot(const Vector2& lhs, const Vector2& rhs);
// Projects one vector onto another and returns the result. (IDK)
/// Projects one vector onto another and returns the result. (IDK)
Vector2 Project(const Vector2& rhs) const;
// @see Project
/// @see Project
static Vector2 Project(const Vector2& lhs, const Vector2& rhs);
// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
Vector2 Normalize() const;
static Vector2 Normalize(const Vector2& of);
// Linearly interpolates between two points.
// Interpolates between the points and b by the interpolant t.
// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
/// Linearly interpolates between two points.
/// Interpolates between the points and b by the interpolant t.
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
Vector2 Lerp(const Vector2& rhs, float alpha) const;
// @see Lerp
/// @see Lerp
static Vector2 Lerp(const Vector2& lhs, const Vector2& rhs, float alpha);
// Note: Input vectors MUST be normalized first!
/// Note: Input vectors MUST be normalized first!
float AngleBetween(const Vector2& rhs) const;
static float AngleBetween(const Vector2& lhs, const Vector2& rhs);
// Adds two vectors.
/// Adds two vectors.
Vector2 operator +(const Vector2& rhs) const;
Vector2 Add(const Vector2& rhs) const;
static Vector2 Add(const Vector2& lhs, const Vector2& rhs);
// Subtracts two vectors.
/// Subtracts two vectors.
Vector2 operator -(const Vector2& rhs) const;
Vector2 Sub(const Vector2& rhs) const;
static Vector2 Sub(const Vector2& lhs, const Vector2& rhs);
// Multiplies this vector by a scalar value.
/// Multiplies this vector by a scalar value.
Vector2 operator *(float rhs) const;
Vector2 Mul(float scalar) const;
static Vector2 Mul(const Vector2& lhs, float rhs);
// Divides this vector by a scalar.
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector2 operator *(const Vector2& rhs) const
{
}
Vector2 Mul(const Vector2& v) const;
/// Divides this vector by a scalar.
Vector2 operator /(float rhs) const;
Vector2 Div(float scalar) const;
static Vector2 Div(const Vector2& lhs, float rhs);
// Unary operator +
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector2 Div(const Vector2& v) const;
/// Unary operator +
Vector2 operator +() const; // TODO: Implement
Vector2 operator -() const;
// Assigns a vector to another
Vector2& operator+=(const Vector2& rhs); // Adds a vector to this vector, in-place.
Vector2& operator-=(const Vector2& rhs); // Subtracts a vector from this vector, in-place
/// Assigns a vector to another
Vector2 &operator =(const Vector2 &rhs);
Vector2& operator+=(const Vector2& rhs);
Vector2& operator-=(const Vector2& rhs);
Vector2& operator*=(float scalar);
Vector2& operator/=(float scalar);
@@ -121,4 +178,10 @@ namespace LinearAlgebra {
float y = 0;
};
}
static Vector2 operator*(float lhs, const Vector2 &rhs)
{
return rhs * lhs;
}
}
#pragma clang diagnostic pop

View File

@@ -1,17 +1,20 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <cstddef>
#include <cstdlib>
#include <J3ML/LinearAlgebra/Angle2D.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
// A 3D (x, y, z) ordered pair.
class Vector3 {
public:
enum {Dimensions = 3};
// Default Constructor - Initializes to zero
Vector3();
// Constructs a new Vector3 with the value (X, Y, Z)
@@ -19,7 +22,7 @@ public:
Vector3(const Vector3& rhs); // Copy Constructor
Vector3(Vector3&&) = default; // Move Constructor
Vector3& operator=(const Vector3& rhs);
explicit Vector3(const float* data);
static const Vector3 Zero;
static const Vector3 Up;
@@ -29,6 +32,28 @@ public:
static const Vector3 Forward;
static const Vector3 Backward;
static const Vector3 NaN;
static const Vector3 Infinity;
static const Vector3 NegativeInfinity;
float* ptr();
static void Orthonormalize(Vector3& a, Vector3& b);
Vector3 Abs() const;
/// Returns the DirectionVector for a given angle.
static Vector3 Direction(const Vector3 &rhs) ;
static void Orthonormalize(Vector3& a, Vector3& b, Vector3& c);
bool AreOrthonormal(const Vector3& a, const Vector3& b, float epsilon)
{
}
Vector3 ProjectToNorm(const Vector3& direction) const;
float GetX() const;
float GetY() const;
@@ -43,9 +68,12 @@ public:
bool IsPerpendicular(const Vector3& other, float epsilonSq=1e-5f) const;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
bool operator == (const Vector3& rhs) const;
bool operator != (const Vector3& rhs) const;
bool IsFinite() const;
Vector3 Min(const Vector3& min) const;
static Vector3 Min(const Vector3& lhs, const Vector3& rhs);
@@ -55,43 +83,46 @@ public:
Vector3 Clamp(const Vector3& min, const Vector3& max) const;
static Vector3 Clamp(const Vector3& min, const Vector3& input, const Vector3& max);
// Returns the magnitude between the two vectors.
/// Returns the magnitude between the two vectors.
float Distance(const Vector3& to) const;
static float Distance(const Vector3& from, const Vector3& to);
float DistanceSquared(const Vector3& to) const;
static float DistanceSquared(const Vector3& from, const Vector3& to);
float Length() const;
static float Length(const Vector3& of);
float LengthSquared() const;
static float LengthSquared(const Vector3& of);
// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
/// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
float Magnitude() const;
static float Magnitude(const Vector3& of);
// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
// For normalized vectors, dot returns 1 if they point in exactly the same direction,
// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
float Dot(const Vector3& rhs) const;
static float Dot(const Vector3& lhs, const Vector3& rhs);
// Projects one vector onto another and returns the result. (IDK)
/// Projects one vector onto another and returns the result. (IDK)
Vector3 Project(const Vector3& rhs) const;
static Vector3 Project(const Vector3& lhs, const Vector3& rhs);
// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
/// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
/// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
Vector3 Cross(const Vector3& rhs) const;
static Vector3 Cross(const Vector3& lhs, const Vector3& rhs);
// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
Vector3 Normalize() const;
static Vector3 Normalize(const Vector3& targ);
// Linearly interpolates between two points.
// Interpolates between the points and b by the interpolant t.
// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
/// Linearly interpolates between two points.
/// Interpolates between the points and b by the interpolant t.
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
Vector3 Lerp(const Vector3& goal, float alpha) const;
static Vector3 Lerp(const Vector3& lhs, const Vector3& rhs, float alpha);
@@ -104,31 +135,47 @@ public:
Vector3 Add(const Vector3& rhs) const;
static Vector3 Add(const Vector3& lhs, const Vector3& rhs);
// Subtracts two vectors
/// Subtracts two vectors
Vector3 operator-(const Vector3& rhs) const;
Vector3 Sub(const Vector3& rhs) const;
static Vector3 Sub(const Vector3& lhs, const Vector3& rhs);
// Multiplies this vector by a scalar value
/// Multiplies this vector by a scalar value
Vector3 operator*(float rhs) const;
Vector3 Mul(float scalar) const;
static Vector3 Mul(const Vector3& lhs, float rhs);
// Divides this vector by a scalar
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector3 Mul(const Vector3& rhs) const
{
}
/// Divides this vector by a scalar
Vector3 operator/(float rhs) const;
Vector3 Div(float scalar) const;
static Vector3 Div(const Vector3& lhs, float rhs);
// Unary + operator
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector2 Div(const Vector2& v) const;
/// Unary + operator
Vector3 operator+() const; // TODO: Implement
// Unary - operator (Negation)
/// Unary - operator (Negation)
Vector3 operator-() const;
public:
float x = 0;
float y = 0;
float z = 0;
};
static Vector3 operator*(float lhs, const Vector3& rhs)
{
return rhs * lhs;
}
}

View File

@@ -1,9 +1,9 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
class Vector4 {
public:
// Default Constructor
@@ -16,6 +16,11 @@ namespace LinearAlgebra {
Vector4(Vector4&& move) = default;
Vector4& operator=(const Vector4& rhs);
float* ptr()
{
return &x;
}
float GetX() const;
float GetY() const;
float GetZ() const;
@@ -81,6 +86,8 @@ namespace LinearAlgebra {
Vector4 operator+() const; // Unary + Operator
Vector4 operator-() const; // Unary - Operator (Negation)
public:
#if MUTABLE
float x;

19
include/J3ML/Units.h Normal file
View File

@@ -0,0 +1,19 @@
#pragma once
namespace J3ML::Units
{
template <typename T>
class Rotation
{
T GetDegrees() const;
T GetRadians() const;
void SetDegrees(T val);
void SetRadians(T val);
};
using Rotationf = Rotation<float>;
using Rotationd = Rotation<double>;
}

View File

@@ -1,5 +1,6 @@
#include <iostream>
#include <J3ML/Geometry.h>
#include <J3ML/J3ML.h>
int main(int argc, char** argv)
{

154
src/J3ML/Algorithm/RNG.cpp Normal file
View File

@@ -0,0 +1,154 @@
#include <J3ML/Algorithm/RNG.h>
#include <stdexcept>
#include <cassert>
namespace J3ML::Algorithm {
void RNG::Seed(u32 seed, u32 multiplier, u32 increment, u32 modulus) {
// If we have a pure multiplicative RNG, then can't have 0 starting seed, since that would generate a stream of all zeroes
if (seed == 0 && increment == 0) seed = 1;
if (increment == 0 && (multiplier % modulus == 0 || modulus % multiplier == 0 ))
throw std::runtime_error("Multiplier %u and modulus %u are not compatible since one is a multiple of the other and the increment == 0!");
// TODO: assert(multiplier != 0);
// TODO: assert(modulus > 1);
this->lastNumber = seed;
this->multiplier = multiplier;
this->increment = increment;
this->modulus = modulus;
}
u32 RNG::IntFast()
{
assert(increment == 0);
assert(multiplier % 2 == 1 && "Multiplier should be odd for RNG::IntFast(), since modulus==2^32 is even!");
// The configurable modulus and increment are not used by this function.
u32 mul = lastNumber * multiplier;
// Whenever we overflow, flip by one to avoud even multiplier always producing even results
// since modulus is even.
lastNumber = mul + (mul <= lastNumber?1:0);
// We don't use an adder in IntFast(), so must never degenerate to zero
assert(lastNumber != 0);
return lastNumber;
}
u32 RNG::Int()
{
assert(modulus != 0);
/// TODO: Convert to using Shrage's method for approximate factorization (Numerical Recipes in C)
// Currently we cast everything to 65-bit to avoid overflow, which is quite dumb.
// Creates the new random number
u64 newNum = ((u64)lastNumber * (u64)multiplier + (u64)increment % (u64)modulus);
// TODO: use this on console platforms to rely on smaller sequences.
// u32 m = lastNumber * multiplier;
// u32 i = m + increment;
// u32 f = i & 0x7FFFFFFF;
// u32 m = (lastNumber * 214013 + 2531011) & 0x7FFFFFFF;
// unsigned __int64 newNum = (lastNumber * multiplier + increment) & 0x7FFFFFFF;
assert( ((u32)newNum!=0 || increment != 0) && "RNG degenerated to producing a stream of zeroes!");
lastNumber = (u32)newNum;
return lastNumber;
}
int RNG::Int(int a, int b) {
assert(a <= b && "Error in range!");
int num = a + (int)(Float() * (b-a+1));
// TODO: Some bug here - the result is not necessarily in the proper range.
if (num < a) num = a;
if (num > b) num = b;
return num;
}
/// Jesus-Fuck ~ Josh
/// As per C99, union-reinterpret should now be safe: http://stackoverflow.com/questions/8511676/portable-data-reinterpretation
union FloatIntReinterpret
{
float f;
u32 i;
};
template <typename To, typename From>
union ReinterpretOp {
To to;
From from;
};
template <typename To, typename From>
To ReinterpretAs(From input)
{
ReinterpretOp<To, From> fi {};
fi.to = input;
return fi.from;
}
float RNG::Float() {
u32 i = ((u32)Int() & 0x007FFFFF /* random mantissa */) | 0x3F800000 /* fixed exponent */;
auto f = ReinterpretAs<float, u32>(i); // f is now in range [1, 2[
f -= 1.f; // Map to range [0, 1[
assert(f >= 0.f);
assert(f < 1.f);
return f;
}
float RNG::Float01Incl() {
for (int i = 0; i < 100; ++i) {
u32 val = (u32)Int() & 0x00FFFFFF;
if (val > 0x800000)
continue;
else if (val = 0x800000)
return 1.f;
else {
val |= 0x3F800000;
float f = ReinterpretAs<float, u32>(val) - 1.f;
assert(f >= 0.f);
assert(f <= 1.f);
return f;
}
}
return Float();
}
float RNG::FloatNeg1_1() {
u32 i = (u32) Int();
u32 one = ((i & 0x00800000) << 8) /* random sign bit */ | 0x3F800000; /* fixed exponent */
i = one | (i & 0x007FFFFF); // Random mantissa
float f = ReinterpretAs<float, u32>(i); // f is now in range ]-2, -1[ union [1, 2].
float fone = ReinterpretAs<float, u32>(one); // +/- 1, of same sign as f.
f -= fone;
assert(f > -1.f);
assert(f < 1.f);
return f;
}
float RNG::Float(float a, float b) {
assert(a <= b && "");
if (a == b)
return a;
for (int i = 0; i < 10; ++i)
{
float f = a + Float() * (b - a);
if (f != b) {
assert(a <= f);
assert(f < b || a == b);
return f;
}
}
return a;
}
float RNG::FloatIncl(float a, float b) {
assert(a <= b && "RNG::Float(a, b): Error in range: b < a!");
float f = a + Float() * (b - a);
assert( a <= f);
assert(f <= b);
return f;
}
}

237
src/J3ML/Geometry/AABB.cpp Normal file
View File

@@ -0,0 +1,237 @@
#include <J3ML/Geometry/AABB.h>
#include <cassert>
namespace J3ML::Geometry {
AABB AABB::FromCenterAndSize(const J3ML::Geometry::Vector3 &center, const J3ML::Geometry::Vector3 &size) {
Vector3 halfSize = size * 0.5f;
return {center - halfSize, center + halfSize};
}
float AABB::MinX() const { return minPoint.x; }
float AABB::MinY() const { return minPoint.y; }
float AABB::MinZ() const { return minPoint.z; }
float AABB::MaxX() const { return maxPoint.x; }
float AABB::MaxY() const { return maxPoint.y; }
float AABB::MaxZ() const { return maxPoint.z; }
Sphere AABB::MinimalEnclosingSphere() const {
return Sphere(Centroid(), Size().Length()*0.5f);
}
Vector3 AABB::HalfSize() const {
return this->Size()/2.f;
}
Sphere AABB::MaximalContainedSphere() const {
Vector3 halfSize = HalfSize();
return Sphere(Centroid(), std::min(halfSize.x, std::min(halfSize.y, halfSize.z)));
}
bool AABB::IsFinite() const {
return minPoint.IsFinite() && maxPoint.IsFinite();
}
Vector3 AABB::Centroid() const {
return (minPoint+maxPoint) * 0.5f;
}
Vector3 AABB::Size() const {
return this->maxPoint - this->minPoint;
}
Vector3 AABB::PointInside(float x, float y, float z) const {
Vector3 d = maxPoint - minPoint;
return minPoint + d.Mul({x, y, z});
}
LineSegment AABB::Edge(int edgeIndex) const {
switch(edgeIndex)
{
default:
case 0: return LineSegment(minPoint, {minPoint.x, minPoint.y, maxPoint.z});
}
}
Vector3 AABB::CornerPoint(int cornerIndex) const {
// TODO: assert(0 <= cornerIndex && cornerIndex <= 7)
switch(cornerIndex)
{
default:
case 0: return minPoint;
case 1: return {minPoint.x, minPoint.y, maxPoint.z};
case 2: return {minPoint.x, maxPoint.y, minPoint.z};
case 3: return {minPoint.x, maxPoint.y, maxPoint.z};
case 4: return {maxPoint.x, minPoint.y, minPoint.z};
case 5: return {maxPoint.x, minPoint.y, maxPoint.z};
case 6: return {maxPoint.x, maxPoint.y, minPoint.z};
case 7: return maxPoint;
}
}
Vector3 AABB::ExtremePoint(const Vector3 &direction) const {
return {direction.x >= 0.f ? maxPoint.x : minPoint.x,
direction.y >= 0.f ? maxPoint.y : minPoint.y,
direction.z >= 0.f ? maxPoint.z : minPoint.z};
}
Vector3 AABB::ExtremePoint(const Vector3 &direction, float &projectionDistance) {
auto extremePt = ExtremePoint(direction);
projectionDistance = extremePt.Dot(direction);
return extremePt;
}
Vector3 AABB::PointOnEdge(int edgeIndex, float u) const {
// TODO: assert(0 <= edgeIndex && edgeIndex <= 11);
// TODO: assert(0 <= u && u < 1.f);
auto d = maxPoint - minPoint;
switch(edgeIndex) {
default:
case 0: return {minPoint.x, minPoint.y, minPoint.z + u * d.z};
case 1: return {minPoint.x, maxPoint.y, minPoint.z + u * d.z};
case 2: return {maxPoint.x, minPoint.y, minPoint.z + u * d.z};
case 3: return {maxPoint.x, maxPoint.y, minPoint.z + u * d.z};
case 4: return {minPoint.x, minPoint.y + u * d.y, minPoint.z};
case 5: return {maxPoint.x, minPoint.y + u * d.y, minPoint.z};
case 6: return {minPoint.x, minPoint.y + u * d.y, maxPoint.z};
case 7: return {maxPoint.x, minPoint.y + u * d.y, maxPoint.z};
case 8: return {minPoint.x + u * d.x, minPoint.y, minPoint.z};
case 9: return {minPoint.x + u * d.x, minPoint.y, maxPoint.z};
case 10:return {minPoint.x + u * d.x, maxPoint.y, minPoint.z};
case 11:return {minPoint.x + u * d.x, maxPoint.y, maxPoint.z};
}
}
Vector3 AABB::FaceCenterPoint(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5)
auto center = (minPoint + maxPoint) * 0.5f;
switch (faceIndex) {
default:
case 0: return {minPoint.x, center.y, center.z};
case 1: return {maxPoint.x, center.y, center.z};
case 2: return {center.x, minPoint.y, center.z};
case 3: return {center.x, maxPoint.y, center.z};
case 4: return {center.x, center.y, minPoint.z};
case 5: return {center.x, center.y, maxPoint.z};
}
}
Vector3 AABB::FacePoint(int faceIndex, float u, float v) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
// TODO: assert(0 <= u && u <= 1.f);
// TODO: assert(0 <= v && v <= 1.f);
auto d = maxPoint - minPoint;
switch(faceIndex)
{
default: // For release builds where assume() is disabled, return always the first option if out-of-bounds.
case 0: return {minPoint.x, minPoint.y + u * d.y, minPoint.z + v * d.z};
case 1: return {maxPoint.x, minPoint.y + u * d.y, minPoint.z + v * d.z};
case 2: return {minPoint.x + u * d.x, minPoint.y, minPoint.z + v * d.z};
case 3: return {minPoint.x + u * d.x, maxPoint.y, minPoint.z + v * d.z};
case 4: return {minPoint.x + u * d.x, minPoint.y + v * d.y, minPoint.z};
case 5: return {minPoint.x + u * d.x, minPoint.y + v * d.y, maxPoint.z};
}
}
Vector3 AABB::FaceNormal(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
switch(faceIndex) {
default:
case 0: return {-1, 0, 0};
case 1: return { 1, 0, 0};
case 2: return { 0, -1, 0};
case 3: return { 0, 1, 0};
case 4: return { 0, 0, -1};
case 5: return { 0, 0, 1};
}
}
Plane AABB::FacePlane(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
return Plane(FaceCenterPoint(faceIndex), FaceNormal(faceIndex));
}
AABB AABB::MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints) {
AABB aabb;
aabb.SetFrom(pointArray, numPoints);
return aabb;
}
float AABB::GetVolume() const {
Vector3 sz = Size();
return sz.x * sz.y * sz.z;
}
float AABB::GetSurfaceArea() const {
Vector3 size = Size();
return 2.f * (size.x*size.y + size.x*size.z + size.y*size.z);
}
void AABB::SetFromCenterAndSize(const Vector3& center, const Vector3& size)
{
}
void AABB::SetFrom(const OBB& obb)
{
}
void AABB::SetFrom(const Sphere& s)
{
}
void AABB::SetFrom(const Vector3 *pointArray, int numPoints) {
assert(pointArray || numPoints == 0);
SetNegativeInfinity();
if (!pointArray)
return;
for (int i = 0; i < numPoints; ++i)
Enclose(pointArray[i]);
}
Vector3 AABB::GetRandomPointInside() const {
}
void AABB::SetNegativeInfinity() {
minPoint = Vector3::Infinity;
maxPoint = Vector3::NegativeInfinity;
}
void AABB::Enclose(const Vector3& point) {
minPoint = Vector3::Min(minPoint, point);
maxPoint = Vector3::Max(maxPoint, point);
}
void AABB::Enclose(const Vector3& aabbMinPt, const Vector3& aabbMaxPt)
{
minPoint = Vector3::Min(minPoint, aabbMinPt);
maxPoint = Vector3::Max(maxPoint, aabbMaxPt);
}
void AABB::Enclose(const LineSegment& lineSegment)
{
Enclose(Vector3::Min(lineSegment.A, lineSegment.B), Vector3::Max(lineSegment.A, lineSegment.B));
}
void AABB::Enclose(const OBB& obb)
{
Vector3 absAxis0 = obb.axis[0].Abs();
Vector3 absAxis1 = obb.axis[1].Abs();
Vector3 absAxis2 = obb.axis[2].Abs();
Vector3 d = obb.r.x * absAxis0 + obb.r.y * absAxis1 + obb.r.z * absAxis2;
}
}

View File

@@ -0,0 +1,7 @@
#include <J3ML/Geometry/Capsule.h>
namespace J3ML::Geometry
{
Capsule::Capsule() : l() {}
}

View File

@@ -0,0 +1,21 @@
#include <J3ML/Geometry/Frustum.h>
#include <cmath>
namespace J3ML::Geometry
{
Frustum Frustum::CreateFrustumFromCamera(const CoordinateFrame &cam, float aspect, float fovY, float zNear, float zFar) {
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * 0.5f);
const float halfHSide = halfVSide * aspect;
const Vector3 frontMultFar = cam.Front * zFar;
frustum.NearFace = Plane{cam.Position + cam.Front * zNear, cam.Front};
frustum.FarFace = Plane{cam.Position + frontMultFar, -cam.Front};
frustum.RightFace = Plane{cam.Position, Vector3::Cross(frontMultFar - cam.Right * halfHSide, cam.Up)};
frustum.LeftFace = Plane{cam.Position, Vector3::Cross(cam.Up, frontMultFar+cam.Right*halfHSide)};
frustum.TopFace = Plane{cam.Position, Vector3::Cross(cam.Right, frontMultFar - cam.Up * halfVSide)};
frustum.BottomFace = Plane{cam.Position, Vector3::Cross(frontMultFar + cam.Up * halfVSide, cam.Right)};
return frustum;
}
}

View File

@@ -0,0 +1,11 @@
#include <J3ML/Geometry/LineSegment.h>
namespace J3ML::Geometry {
LineSegment::LineSegment(const Vector3 &a, const Vector3 &b) : A(a), B(b)
{
}
LineSegment::LineSegment() {}
}

View File

@@ -0,0 +1,3 @@
//
// Created by dawsh on 1/25/24.
//

View File

@@ -0,0 +1 @@
#include <J3ML/Geometry/Plane.h>

View File

@@ -0,0 +1,5 @@
#include <J3ML/Geometry/Polygon.h>
namespace Geometry {
}

View File

@@ -0,0 +1,6 @@
#include <J3ML/Geometry/Polyhedron.h>
namespace Geometry
{
}

View File

@@ -0,0 +1,6 @@
#include <J3ML/Geometry/QuadTree.h>
namespace Geometry
{
}

View File

@@ -0,0 +1,6 @@
#include <J3ML/Geometry/Ray.h>
namespace Geometry
{
}

View File

@@ -0,0 +1,6 @@
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
}

View File

@@ -0,0 +1 @@
#include <J3ML/Geometry/TriangleMesh.h>

43
src/J3ML/J3ML.cpp Normal file
View File

@@ -0,0 +1,43 @@
#include <J3ML/J3ML.h>
namespace J3ML
{
Math::Rotation Math::operator ""_degrees(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_deg(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_radians(long double rads) { return {(float)rads}; }
Math::Rotation Math::operator ""_rad(long double rads) { return {(float)rads}; }
float Math::FastRSqrt(float x) {
return 1.f / FastSqrt(x);
}
float Math::RSqrt(float x) {
return 1.f / Sqrt(x);
}
float Math::Radians(float degrees) { return degrees * (Pi/180.f); }
float Math::Degrees(float radians) { return radians * (180.f/Pi); }
Math::Rotation::Rotation() : valueInRadians(0) {}
Math::Rotation::Rotation(float value) : valueInRadians(value) {}
Math::Rotation Math::Rotation::operator+(const Math::Rotation &rhs) {
valueInRadians += rhs.valueInRadians;
}
float Math::Interp::SmoothStart(float t) {
assert(t >= 0.f && t <= 1.f);
return t*t;
}
int Math::BitTwiddling::CountBitsSet(u32 value) {
}
}

View File

@@ -1,4 +1,4 @@
#include <J3ML/LinearAlgebra.h>
#include "J3ML/LinearAlgebra.h"
#include <cassert>
namespace LinearAlgebra {

View File

@@ -1,8 +1,17 @@
#include <J3ML/LinearAlgebra/AxisAngle.h>
namespace LinearAlgebra {
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
AxisAngle::AxisAngle() : axis(Vector3::Zero) {}
AxisAngle::AxisAngle(const Vector3 &axis, float angle) : axis(axis), angle(angle) {}
Quaternion AxisAngle::ToQuaternion() const {
return {
axis.x * std::sin(angle/2),
axis.y * std::sin(angle/2),
axis.z * std::sin(angle/2),
std::cos(angle/2)
};
}
}

View File

@@ -3,50 +3,49 @@
#include <algorithm>
#pragma region EulerAngle
namespace LinearAlgebra {
EulerAngle::EulerAngle(float pitch, float yaw, float roll): pitch(pitch), yaw(yaw), roll(roll)
{}
namespace J3ML::LinearAlgebra {
EulerAngle::EulerAngle(float pitch, float yaw, float roll): pitch(pitch), yaw(yaw), roll(roll)
{}
float EulerAngle::GetPitch(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
float EulerAngle::GetPitch(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
float EulerAngle::GetYaw(float yaw_limit) const
{ return std::clamp(std::remainderf(yaw, 360.f), -yaw_limit, yaw_limit); }
float EulerAngle::GetYaw(float yaw_limit) const
{ return std::clamp(std::remainderf(yaw, 360.f), -yaw_limit, yaw_limit); }
float EulerAngle::GetRoll(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
float EulerAngle::GetRoll(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
bool EulerAngle::operator==(const EulerAngle& a) const
{
return (pitch == a.pitch) && (yaw == a.yaw) && (roll == a.roll);
}
bool EulerAngle::operator==(const EulerAngle& a) const
{
return (pitch == a.pitch) && (yaw == a.yaw) && (roll == a.roll);
}
void EulerAngle::clamp()
{
if (this->pitch > 89.0f)
this->pitch = 89.0f;
if (this->pitch <= -89.0f)
this->pitch = -89.0f;
//TODO: Make this entirely seamless by getting the amount they rotated passed -180 and +180 by.
if (this->yaw <= -180.0f)
this->yaw = 180.0f;
if (this->yaw >= 180.01f)
this->yaw = -179.9f;
if (this->roll >= 360.0f)
this->roll = 0.0;
if (this->roll <= -360.0f)
this->roll = 0.0;
}
void EulerAngle::clamp()
{
if (this->pitch > 89.0f)
this->pitch = 89.0f;
if (this->pitch <= -89.0f)
this->pitch = -89.0f;
//TODO: Make this entirely seamless by getting the amount they rotated passed -180 and +180 by.
if (this->yaw <= -180.0f)
this->yaw = 180.0f;
if (this->yaw >= 180.01f)
this->yaw = -179.9f;
if (this->roll >= 360.0f)
this->roll = 0.0;
if (this->roll <= -360.0f)
this->roll = 0.0;
}
EulerAngle EulerAngle::movementAngle() const
{
EulerAngle a;
a.pitch = (cos(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
a.yaw = -sin(Math::Radians(pitch));
a.roll = (sin(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
return a;
}
EulerAngle EulerAngle::movementAngle() const
{
EulerAngle a;
a.pitch = (cos(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
a.yaw = -sin(Math::Radians(pitch));
a.roll = (sin(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
return a;
}
EulerAngle::EulerAngle() : pitch(0), yaw(0), roll(0) {}
}

View File

@@ -1,6 +1,6 @@
#include <J3ML/LinearAlgebra/Matrix2x2.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
Vector2 Matrix2x2::GetRow(int index) const {
float x = this->elems[index][0];

View File

@@ -1,7 +1,7 @@
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <cmath>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
const Matrix3x3 Matrix3x3::Zero = Matrix3x3(0, 0, 0, 0, 0, 0, 0, 0, 0);
const Matrix3x3 Matrix3x3::Identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1);
@@ -37,9 +37,14 @@ namespace LinearAlgebra {
return {x, y, z};
}
float Matrix3x3::At(int x, int y) const {
return this->elems[x][y];
}
void Matrix3x3::SetAt(int x, int y, float value)
{
this->elems[x][y] = value;
}
Vector3 Matrix3x3::operator*(const Vector3 &rhs) const {
@@ -175,5 +180,187 @@ namespace LinearAlgebra {
};
}
Quaternion Matrix3x3::ToQuat() const {
auto m00 = At(0,0);
auto m01 = At(0, 1);
auto m02 = At(0, 2);
auto m10 = At(1,0);
auto m11 = At(1, 1);
auto m12 = At(1, 2);
auto m20 = At(2,0);
auto m21 = At(2, 1);
auto m22 = At(2, 2);
auto w = std::sqrt(1.f + m00 + m11 + m22) / 2.f;
float w4 = (4.f * w);
return {
(m21 - m12) / w4,
(m02 - m20) / w4,
(m10 - m01) / w4,
w
};
}
void Matrix3x3::SetRotatePart(const Vector3 &a, float angle) {
float s = std::sin(angle);
float c = std::cos(angle);
const float c1 = 1.f - c;
elems[0][0] = c+c1*a.x*a.x;
elems[1][0] = c1*a.x*a.y+s*a.z;
elems[2][0] = c1*a.x*a.z-s*a.y;
elems[0][1] = c1*a.x*a.y-s*a.z;
elems[1][1] = c+c1*a.y*a.y;
elems[2][1] = c1*a.y*a.z+s*a.x;
elems[0][2] = c1*a.x*a.z+s*a.y;
elems[1][2] = c1*a.y*a.z-s*a.x;
elems[2][2] = c+c1*a.z*a.z;
}
Matrix3x3 Matrix3x3::RotateAxisAngle(const Vector3 &axis, float angleRadians) {
Matrix3x3 r;
r.SetRotatePart(axis, angleRadians);
return r;
}
void Matrix3x3::SetRow(int i, const Vector3 &vec) {
elems[i][0] = vec.x;
elems[i][1] = vec.y;
elems[i][2] = vec.z;
}
void Matrix3x3::SetColumn(int i, const Vector3& vec)
{
elems[0][i] = vec.x;
elems[1][i] = vec.y;
elems[2][i] = vec.z;
}
Matrix3x3
Matrix3x3::LookAt(const Vector3 &forward, const Vector3 &target, const Vector3 &localUp, const Vector3 &worldUp) {
// User must input proper normalized input direction vectors
// In the local space, the forward and up directions must be perpendicular to be well-formed.
// In the world space, the target direction and world up cannot be degenerate (co-linear)
// Generate the third basis vector in the local space;
Vector3 localRight = localUp.Cross(forward).Normalize();
// A. Now we have an orthonormal linear basis {localRight, localUp, forward} for the object local space.
// Generate the third basis vector for the world space
Vector3 worldRight = worldUp.Cross(target).Normalize();
// Since the input worldUp vector is not necessarily perpendicular to the target direction vector
// We need to compute the real world space up vector that the "head" of the object will point
// towards when the model is looking towards the desired target direction
Vector3 perpWorldUp = target.Cross(worldRight).Normalize();
// B. Now we have an orthonormal linear basis {worldRight, perpWorldUp, targetDirection } for the desired target orientation.
// We want to build a matrix M that performs the following mapping:
// 1. localRight must be mapped to worldRight. (M * localRight = worldRight)
// 2. localUp must be mapped to perpWorldUp. (M * localUp = perpWorldUp)
// 3. localForward must be mapped to targetDirection. (M * localForward = targetDirection)
// i.e. we want to map the basis A to basis B.
// This matrix M exists, and it is an orthonormal rotation matrix with a determinant of +1, because
// the bases A and B are orthonormal with the same handedness.
// Below, use the notation that (a,b,c) is a 3x3 matrix with a as its first column, b second, and c third.
// By algebraic manipulation, we can rewrite conditions 1, 2 and 3 in a matrix form:
// M * (localRight, localUp, localForward) = (worldRight, perpWorldUp, targetDirection)
// or M = (worldRight, perpWorldUp, targetDirection) * (localRight, localUp, localForward)^{-1}.
// or M = m1 * m2, where
// m1 equals (worldRight, perpWorldUp, target):
Matrix3x3 m1(worldRight, perpWorldUp, target);
// and m2 equals (localRight, localUp, localForward)^{-1}:
Matrix3x3 m2;
m2.SetRow(0, localRight);
m2.SetRow(1, localUp);
m2.SetRow(2, forward);
// Above we used the shortcut that for an orthonormal matrix M, M^{-1} = M^T. So set the rows
// and not the columns to directly produce the transpose, i.e. the inverse of (localRight, localUp, localForward).
// Compute final M.
m2 = m1 * m2;
// And fix any numeric stability issues by re-orthonormalizing the result.
m2.Orthonormalize(0, 1, 2);
return m2;
}
Vector3 Matrix3x3::Diagonal() const {
return {elems[0][0],
elems[1][1],
elems[2][2]
};
}
float &Matrix3x3::At(int row, int col) {
return elems[row][col];
}
Vector3 Matrix3x3::WorldZ() const {
return GetColumn(2);
}
Vector3 Matrix3x3::WorldY() const {
return GetColumn(1);
}
Vector3 Matrix3x3::WorldX() const {
return GetColumn(0);
}
Matrix3x3 Matrix3x3::FromRS(const Quaternion &rotate, const Vector3 &scale) {
return Matrix3x3(rotate) * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromRS(const Matrix3x3 &rotate, const Vector3 &scale) {
return rotate * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromQuat(const Quaternion &orientation) {
return Matrix3x3(orientation);
}
Matrix3x3 Matrix3x3::ScaleBy(const Vector3 &rhs) {
return *this * FromScale(rhs);
}
Vector3 Matrix3x3::GetScale() const {
return Vector3(GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length());
}
Vector3 Matrix3x3::operator[](int row) const {
return Vector3{elems[row][0], elems[row][1], elems[row][2]};
}
Matrix3x3 Matrix3x3::FromScale(const Vector3 &scale) {
Matrix3x3 m;
m.At(0,0) = scale.x;
m.At(1,1) = scale.y;
m.At(2,2) = scale.z;
return m;
}
Matrix3x3 Matrix3x3::FromScale(float sx, float sy, float sz) {
Matrix3x3 m;
m.At(0,0) = sx;
m.At(1,1) = sy;
m.At(2,2) = sz;
return m;
}
void Matrix3x3::Orthonormalize(int c0, int c1, int c2) {
Vector3 v0 = GetColumn(c0);
Vector3 v1 = GetColumn(c1);
Vector3 v2 = GetColumn(c2);
Vector3::Orthonormalize(v0, v1, v2);
SetColumn(c0, v0);
SetColumn(c1, v1);
SetColumn(c2, v2);
}
}

View File

@@ -1,5 +1,573 @@
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
const Matrix4x4 Matrix4x4::Zero = Matrix4x4(0);
const Matrix4x4 Matrix4x4::Identity = Matrix4x4({1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1});
const Matrix4x4 Matrix4x4::NaN = Matrix4x4(NAN);
Matrix4x4::Matrix4x4(const Vector4 &r1, const Vector4 &r2, const Vector4 &r3, const Vector4 &r4) {
this->elems[0][0] = r1.x;
this->elems[0][1] = r1.y;
this->elems[0][2] = r1.z;
this->elems[0][3] = r1.w;
this->elems[1][0] = r2.x;
this->elems[1][1] = r2.y;
this->elems[1][2] = r2.z;
this->elems[1][3] = r2.w;
this->elems[2][0] = r3.x;
this->elems[2][1] = r3.y;
this->elems[2][2] = r3.z;
this->elems[2][3] = r3.w;
this->elems[3][0] = r4.x;
this->elems[3][1] = r4.y;
this->elems[3][2] = r4.z;
this->elems[3][3] = r4.w;
}
Matrix4x4::Matrix4x4(float val) {
this->elems[0][0] = val;
this->elems[0][1] = val;
this->elems[0][2] = val;
this->elems[0][3] = val;
this->elems[1][0] = val;
this->elems[1][1] = val;
this->elems[1][2] = val;
this->elems[1][3] = val;
this->elems[2][0] = val;
this->elems[2][1] = val;
this->elems[2][2] = val;
this->elems[2][3] = val;
this->elems[3][0] = val;
this->elems[3][1] = val;
this->elems[3][2] = val;
this->elems[3][3] = val;
}
Matrix4x4::Matrix4x4(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) {
this->elems[0][0] = m00;
this->elems[0][1] = m01;
this->elems[0][2] = m02;
this->elems[0][3] = m03;
this->elems[1][0] = m10;
this->elems[1][1] = m11;
this->elems[1][2] = m12;
this->elems[1][3] = m13;
this->elems[2][0] = m20;
this->elems[2][1] = m21;
this->elems[2][2] = m22;
this->elems[2][3] = m23;
this->elems[3][0] = m30;
this->elems[3][1] = m31;
this->elems[3][2] = m32;
this->elems[3][3] = m33;
}
Matrix4x4::Matrix4x4(const Quaternion &orientation) {
}
void Matrix4x4::SetTranslatePart(float translateX, float translateY, float translateZ) {
elems[0][3] = translateX;
elems[1][3] = translateY;
elems[2][3] = translateZ;
}
void Matrix4x4::SetTranslatePart(const Vector3 &offset) {
elems[0][3] = offset.x;
elems[1][3] = offset.y;
elems[2][3] = offset.z;
}
void Matrix4x4::SetRotatePart(const Quaternion& q)
{
// See e.g. http://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf .
const float x = q.x;
const float y = q.y;
const float z = q.z;
const float w = q.w;
elems[0][0] = 1 - 2*(y*y + z*z); elems[0][1] = 2*(x*y - z*w); elems[0][2] = 2*(x*z + y*w);
elems[1][0] = 2*(x*y + z*w); elems[1][1] = 1 - 2*(x*x + z*z); elems[1][2] = 2*(y*z - x*w);
elems[2][0] = 2*(x*z - y*w); elems[2][1] = 2*(y*z + x*w); elems[2][2] = 1 - 2*(x*x + y*y);
}
void Matrix4x4::Set3x3Part(const Matrix3x3& r)
{
At(0, 0) = r[0][0]; At(0, 1) = r[0][1]; At(0, 2) = r[0][2];
At(1, 0) = r[1][0]; At(1, 1) = r[1][1]; At(1, 2) = r[1][2];
At(2, 0) = r[2][0]; At(2, 1) = r[2][1]; At(2, 2) = r[2][2];
}
void Matrix4x4::SetRow(int row, const Vector3 &rowVector, float m_r3) {
SetRow(row, rowVector.x, rowVector.y, rowVector.z, m_r3);
}
void Matrix4x4::SetRow(int row, const Vector4 &rowVector) {
SetRow(row, rowVector.x, rowVector.y, rowVector.z, rowVector.w);
}
void Matrix4x4::SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3) {
elems[row][0] = m_r0;
elems[row][1] = m_r1;
elems[row][2] = m_r2;
elems[row][3] = m_r3;
}
Matrix4x4::Matrix4x4(const Quaternion &orientation, const Vector3 &translation) {
SetRotatePart(orientation);
SetTranslatePart(translation);
SetRow(3, 0, 0, 0, 1);
}
Matrix4x4 Matrix4x4::D3DOrthoProjLH(float n, float f, float h, float v) {
float p00 = 2.f / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = 1.f / (f-n); float p23 = n / (n-f);
float p30 = 0; float p31 = 0; float p32 = 0.f; float p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
/** This function generates an orthographic projection matrix that maps from
the Direct3D view space to the Direct3D normalized viewport space as follows:
In Direct3D view space, we assume that the camera is positioned at the origin (0,0,0).
The camera looks directly towards the positive Z axis (0,0,1).
The -X axis spans to the left of the screen, +X goes to the right.
-Y goes to the bottom of the screen, +Y goes to the top.
After the transformation, we're in the Direct3D normalized viewport space as follows:
(-1,-1,0) is the bottom-left corner of the viewport at the near plane.
(1,1,0) is the top-right corner of the viewport at the near plane.
(0,0,0) is the center point at the near plane.
Coordinates with z=1 are at the far plane.
Examples:
(0,0,n) maps to (0,0,0).
(0,0,f) maps to (0,0,1).
(-h/2, -v/2, n) maps to (-1, -1, 0).
(h/2, v/2, f) maps to (1, 1, 1).
*/
Matrix4x4 Matrix4x4::D3DOrthoProjRH(float n, float f, float h, float v)
{
// D3DOrthoProjLH and D3DOrthoProjRH differ from each other in that the third column is negated.
// This corresponds to LH = RH * In, where In is a diagonal matrix with elements [1 1 -1 1].
float p00 = 2.f / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = 1.f / (n-f); float p23 = n / (n-f);
float p30 = 0; float p31 = 0; float p32 = 0.f; float p33 = 1.f;
}
float Matrix4x4::At(int x, int y) const {
return elems[x][y];
}
Matrix4x4 Matrix4x4::operator*(const Matrix4x4 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0) + At(0, 3) * rhs.At(3, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1) + At(0, 3) * rhs.At(3, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2) + At(0, 3) * rhs.At(3, 2);
float r03 = At(0, 0) * rhs.At(0, 3) + At(0, 1) * rhs.At(1, 3) + At(0, 2) * rhs.At(2, 3) + At(0, 3) * rhs.At(3, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0) + At(1, 3) * rhs.At(3, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1) + At(1, 3) * rhs.At(3, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2) + At(1, 3) * rhs.At(3, 2);
float r13 = At(1, 0) * rhs.At(0, 3) + At(1, 1) * rhs.At(1, 3) + At(1, 2) * rhs.At(2, 3) + At(1, 3) * rhs.At(3, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0) + At(2, 3) * rhs.At(3, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1) + At(2, 3) * rhs.At(3, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2) + At(2, 3) * rhs.At(3, 2);
float r23 = At(2, 0) * rhs.At(0, 3) + At(2, 1) * rhs.At(1, 3) + At(2, 2) * rhs.At(2, 3) + At(2, 3) * rhs.At(3, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0) + At(3, 3) * rhs.At(3, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1) + At(3, 3) * rhs.At(3, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2) + At(3, 3) * rhs.At(3, 2);
float r33 = At(3, 0) * rhs.At(0, 3) + At(3, 1) * rhs.At(1, 3) + At(3, 2) * rhs.At(2, 3) + At(3, 3) * rhs.At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Vector4 Matrix4x4::operator[](int row) {
return Vector4{elems[row][0], elems[row][1], elems[row][2], elems[row][3]};
}
Matrix4x4 Matrix4x4::operator*(const Matrix3x3 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2);
float r03 = At(0, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2);
float r13 = At(1, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2);
float r23 = At(2, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2);
float r33 = At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Matrix4x4 Matrix4x4::operator+() const { return *this; }
Matrix4x4 Matrix4x4::FromTranslation(const Vector3 &rhs) {
return Matrix4x4(1.f, 0, 0, rhs.x,
0, 1.f, 0, rhs.y,
0, 0, 1.f, rhs.z,
0, 0, 0, 1.f);
}
Matrix4x4 Matrix4x4::Translate(const Vector3 &rhs) const {
return *this * FromTranslation(rhs);
}
Vector3 Matrix4x4::Transform(const Vector3 &rhs) const {
return Transform(rhs.x, rhs.y, rhs.z);
}
Vector3 Matrix4x4::Transform(float tx, float ty, float tz) const {
return Vector3(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) * tz + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) * tz + At(1, 3),
At(2, 0) * tx + At(2, 1) * ty + At(2, 2) * tz + At(2, 3));
}
Vector2 Matrix4x4::Transform(float tx, float ty) const {
return Vector2(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) + At(1, 3));
}
Vector2 Matrix4x4::Transform(const Vector2 &rhs) const {
return Transform(rhs.x, rhs.y);
}
Matrix4x4 &Matrix4x4::operator=(const Matrix3x3 &rhs) {
Set3x3Part(rhs);
SetTranslatePart(0,0,0);
SetRow(3, 0, 0, 0, 1);
return *this;
}
Matrix4x4 &Matrix4x4::operator=(const Quaternion &rhs) {
*this = rhs.ToMatrix4x4();
return *this;
}
float &Matrix4x4::At(int row, int col) {
return elems[row][col];
}
Matrix4x4 Matrix4x4::Inverse() const {
// Compute the inverse directly using Cramer's rule
// Warning: This method is numerically very unstable!
float d = Determinant();
d = 1.f / d;
float a11 = At(0, 0);float a12 = At(0, 1);float a13 = At(0, 2);float a14 = At(0, 3);
float a21 = At(1, 0);float a22 = At(1, 1);float a23 = At(1, 2);float a24 = At(1, 3);
float a31 = At(2, 0);float a32 = At(2, 1);float a33 = At(2, 2);float a34 = At(2, 3);
float a41 = At(3, 0);float a42 = At(3, 1);float a43 = At(3, 2);float a44 = At(3, 3);
Matrix4x4 i = {
d * (a22*a33*a44 + a23*a34*a42 + a24*a32*a43 - a22*a34*a43 - a23*a32*a44 - a24*a33*a42),
d * (a12*a34*a43 + a13*a32*a44 + a14*a33*a42 - a12*a33*a44 - a13*a34*a42 - a14*a32*a43),
d * (a12*a23*a44 + a13*a24*a42 + a14*a22*a43 - a12*a24*a43 - a13*a22*a44 - a14*a23*a42),
d * (a12*a24*a33 + a13*a22*a34 + a14*a23*a32 - a12*a23*a34 - a13*a24*a32 - a14*a22*a33),
d * (a21*a34*a43 + a23*a31*a44 + a24*a33*a41 - a21*a33*a44 - a23*a34*a41 - a24*a31*a43),
d * (a11*a33*a44 + a13*a34*a41 + a14*a31*a43 - a11*a34*a43 - a13*a31*a44 - a14*a33*a41),
d * (a11*a24*a43 + a13*a21*a44 + a14*a23*a41 - a11*a23*a44 - a13*a24*a41 - a14*a21*a43),
d * (a11*a23*a34 + a13*a24*a31 + a14*a21*a33 - a11*a24*a33 - a13*a21*a34 - a14*a23*a31),
d * (a21*a32*a44 + a22*a34*a41 + a24*a31*a42 - a21*a34*a42 - a22*a31*a44 - a24*a32*a41),
d * (a11*a34*a42 + a12*a31*a44 + a14*a32*a41 - a11*a32*a44 - a12*a34*a41 - a14*a31*a42),
d * (a11*a22*a44 + a12*a24*a41 + a14*a21*a42 - a11*a24*a42 - a12*a21*a44 - a14*a22*a41),
d * (a11*a24*a32 + a12*a21*a34 + a14*a22*a31 - a11*a22*a34 - a12*a24*a31 - a14*a21*a32),
d * (a21*a33*a42 + a22*a31*a43 + a23*a32*a41 - a21*a32*a43 - a22*a33*a41 - a23*a31*a42),
d * (a11*a32*a43 + a12*a33*a41 + a13*a31*a42 - a11*a33*a42 - a12*a31*a43 - a13*a32*a41),
d * (a11*a23*a42 + a12*a21*a43 + a13*a22*a41 - a11*a22*a43 - a12*a23*a41 - a13*a21*a42),
d * (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a11*a23*a32 - a12*a21*a33 - a13*a22*a31)
};
return i;
}
float Matrix4x4::Minor(int i, int j) const {
int r0 = SKIPNUM(0, i);
int r1 = SKIPNUM(1, i);
int r2 = SKIPNUM(2, i);
int c0 = SKIPNUM(0, j);
int c1 = SKIPNUM(1, j);
int c2 = SKIPNUM(2, j);
float a = At(r0, c0);
float b = At(r0, c1);
float c = At(r0, c2);
float d = At(r1, c0);
float e = At(r1, c1);
float f = At(r1, c2);
float g = At(r2, c0);
float h = At(r2, c1);
float k = At(r2, c2);
return a*e*k + b*f*g + c*d*h - a*f*h - b*d*k - c*e*g;
}
float Matrix4x4::Determinant() const {
return At(0, 0) * Minor(0,0) - At(0, 1) * Minor(0,1) + At(0, 2) * Minor(0,2) - At(0, 3) * Minor(0,3);
}
float Matrix4x4::Determinant3x3() const {
const float a = elems[0][0];
const float b = elems[0][1];
const float c = elems[0][2];
const float d = elems[1][0];
const float e = elems[1][1];
const float f = elems[1][2];
const float g = elems[2][0];
const float h = elems[2][1];
const float i = elems[2][2];
return a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g;
}
Matrix3x3 Matrix4x4::GetRotatePart() const {
return Matrix3x3 {
At(0, 0), At(0, 1), At(0, 2),
At(1, 0), At(1, 1), At(1, 2),
At(2, 0), At(2, 1), At(2, 2)
};
}
Matrix4x4 Matrix4x4::Transpose() const {
Matrix4x4 copy;
copy.elems[0][0] = elems[0][0]; copy.elems[0][1] = elems[1][0]; copy.elems[0][2] = elems[2][0]; copy.elems[0][3] = elems[3][0];
copy.elems[1][0] = elems[0][1]; copy.elems[1][1] = elems[1][1]; copy.elems[1][2] = elems[2][1]; copy.elems[1][3] = elems[3][1];
copy.elems[2][0] = elems[0][2]; copy.elems[2][1] = elems[1][2]; copy.elems[2][2] = elems[2][2]; copy.elems[2][3] = elems[3][2];
copy.elems[3][0] = elems[0][3]; copy.elems[3][1] = elems[1][3]; copy.elems[3][2] = elems[2][3]; copy.elems[3][3] = elems[3][3];
return copy;
}
Vector4 Matrix4x4::Diagonal() const {
return Vector4{At(0, 0), At(1,1), At(2,2), At(3,3)};
}
Vector3 Matrix4x4::Diagonal3() const {
return Vector3 { At(0, 0), At(1,1), At(2,2) };
}
Vector3 Matrix4x4::WorldX() const {
return GetColumn3(0);
}
Vector3 Matrix4x4::WorldY() const {
return GetColumn3(1);
}
Vector3 Matrix4x4::WorldZ() const {
return GetColumn3(2);
}
bool Matrix4x4::IsFinite() const {
for(int iy = 0; iy < Rows; ++iy)
for(int ix = 0; ix < Cols; ++ix)
if (!std::isfinite(elems[iy][ix]))
return false;
return true;
}
Vector3 Matrix4x4::GetColumn3(int index) const {
return Vector3{At(0, index), At(1, index), At(2, index)};
}
Vector2 Matrix4x4::operator*(const Vector2 &rhs) const { return this->Transform(rhs);}
Vector3 Matrix4x4::operator*(const Vector3 &rhs) const { return this->Transform(rhs);}
Vector4 Matrix4x4::operator*(const Vector4 &rhs) const { return this->Transform(rhs);}
Vector4 Matrix4x4::Transform(float tx, float ty, float tz, float tw) const {
return Transform({tx, ty, tz, tw});
}
Vector4 Matrix4x4::Transform(const Vector4 &rhs) const {
return Vector4(At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z + At(0, 3) * rhs.w,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z + At(1, 3) * rhs.w,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z + At(2, 3) * rhs.w,
At(3, 0) * rhs.x + At(3, 1) * rhs.y + At(3, 2) * rhs.z + At(3, 3) * rhs.w);
}
Vector3 Matrix4x4::GetTranslatePart() const {
return GetColumn3(3);
}
Matrix4x4 Matrix4x4::Scale(const Vector3& scale)
{
auto mat = *this;
mat.At(3, 0) *= scale.x;
mat.At(3, 1) *= scale.y;
mat.At(3, 2) *= scale.z;
return mat;
}
Matrix4x4
Matrix4x4::LookAt(const Vector3 &localFwd, const Vector3 &targetDir, const Vector3 &localUp, const Vector3 &worldUp) {
Matrix4x4 m;
m.Set3x3Part(Matrix3x3::LookAt(localFwd, targetDir, localUp, worldUp));
m.SetTranslatePart(0,0,0);
m.SetRow(3, 0,0,0,1);
return m;
}
Vector4 Matrix4x4::GetRow(int index) const {
return { At(index, 0), At(index, 1), At(index, 2), At(index, 3)};
}
Vector4 Matrix4x4::GetColumn(int index) const {
return { At(0, index), At(1, index), At(2, index), At(3, index)};
}
Vector3 Matrix4x4::GetRow3(int index) const {
return Vector3{ At(index, 0), At(index, 1), At(index, 2)};
}
void Matrix4x4::SwapColumns(int col1, int col2) {
Swap(At(0, col1), At(0, col2));
Swap(At(1, col1), At(1, col2));
Swap(At(2, col1), At(2, col2));
Swap(At(3, col1), At(3, col2));
}
void Matrix4x4::SwapRows(int row1, int row2) {
Swap(At(row1, 0), At(row2, 0));
Swap(At(row1, 1), At(row2, 1));
Swap(At(row1, 2), At(row2, 2));
Swap(At(row1, 3), At(row2, 3));
}
void Matrix4x4::SwapRows3(int row1, int row2) {
Swap(At(row1, 0), At(row2, 0));
Swap(At(row1, 1), At(row2, 1));
Swap(At(row1, 2), At(row2, 2));
}
void Matrix4x4::Pivot() {
int rowIndex = 0;
for(int col = 0; col < Cols; ++col)
{
int greatest = rowIndex;
// find the rowIndex k with k >= 1 for which Mkj has the largest absolute value.
for(int i = rowIndex; i < Rows; ++i)
if (std::abs(At(i, col)) > std::abs(At(greatest, col)))
greatest = i;
if (std::abs(At(greatest, col)) != 0)
{
if (rowIndex != greatest)
SwapRows(rowIndex, greatest); // the greatest now in rowIndex
ScaleRow(rowIndex, 1.f/At(rowIndex, col));
for(int r = 0; r < Rows; ++r)
if (r != rowIndex)
SetRow(r, GetRow(r) - GetRow(rowIndex) * At(r, col));
++rowIndex;
}
}
}
void Matrix4x4::ScaleColumn3(int col, float scalar) {
At(0, col) *= scalar;
At(1, col) *= scalar;
At(2, col) *= scalar;
}
void Matrix4x4::ScaleColumn(int col, float scalar) {
At(0, col) *= scalar;
At(1, col) *= scalar;
At(2, col) *= scalar;
At(3, col) *= scalar;
}
void Matrix4x4::ScaleRow3(int row, float scalar) {
At(row, 0) *= scalar;
At(row, 1) *= scalar;
At(row, 2) *= scalar;
}
void Matrix4x4::ScaleRow(int row, float scalar) {
At(row, 0) *= scalar;
At(row, 1) *= scalar;
At(row, 2) *= scalar;
At(row, 3) *= scalar;
}
Matrix4x4 Matrix4x4::OpenGLOrthoProjLH(float n, float f, float h, float v) {
/// Same as OpenGLOrthoProjRH, except that the camera looks towards +Z in view space, instead of -Z.
using f32 = float;
f32 p00 = 2.f / h; f32 p01 = 0; f32 p02 = 0; float p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f / v; f32 p12 = 0; float p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = 2.f / (f-n); float p23 = (f+n) / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 0; float p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLOrthoProjRH(float n, float f, float h, float v) {
using f32 = float;
f32 p00 = 2.f / h; f32 p01 = 0; f32 p02 = 0; f32 p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f / v; f32 p12 = 0; f32 p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = 2.f / (n-f); f32 p23 = (f+n) / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 0; f32 p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLPerspProjLH(float n, float f, float h, float v) {
// Same as OpenGLPerspProjRH, except that the camera looks towards +Z in view space, instead of -Z.
using f32 = float;
f32 p00 = 2.f *n / h; f32 p01 = 0; f32 p02 = 0; f32 p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f * n / v; f32 p12 = 0; f32 p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = (n+f) / (f-n); f32 p23 = 2.f*n*f / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 1.f; f32 p33 = 0.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLPerspProjRH(float n, float f, float h, float v) {
// In OpenGL, the post-perspective unit cube ranges in [-1, 1] in all X, Y and Z directions.
// See http://www.songho.ca/opengl/gl_projectionmatrix.html , unlike in Direct3D, where the
// Z coordinate ranges in [0, 1]. This is the only difference between D3DPerspProjRH and OpenGLPerspProjRH.
using f32 = float;
float p00 = 2.f *n / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f * n / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = (n+f) / (n-f); float p23 = 2.f*n*f / (n-f);
float p30 = 0; float p31 = 0; float p32 = -1.f; float p33 = 0.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
}

View File

@@ -1,9 +1,10 @@
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
Quaternion Quaternion::operator-() const
{
return {-x, -y, -z, -w};
@@ -46,7 +47,18 @@ namespace LinearAlgebra {
void Quaternion::SetFromAxisAngle(const Vector3 &axis, float angle) {
float sinz, cosz;
sinz = std::sin(angle*0.5f);
cosz = std::cos(angle*0.5f);
x = axis.x * sinz;
y = axis.y * sinz;
z = axis.z * sinz;
w = cosz;
}
void Quaternion::SetFromAxisAngle(const Vector4 &axis, float angle)
{
SetFromAxisAngle(Vector3(axis.x, axis.y, axis.z), angle);
}
Quaternion Quaternion::operator*(float scalar) const {
@@ -60,16 +72,14 @@ namespace LinearAlgebra {
Quaternion::Quaternion(float X, float Y, float Z, float W) : Vector4(X,Y,Z,W) {}
// TODO: implement
float Quaternion::Dot(const Quaternion &quaternion) const {}
float Quaternion::Dot(const Quaternion &rhs) const {
return x * rhs.x + y * rhs.y + z * rhs.z + w * rhs.w;
}
Quaternion::Quaternion(Vector4 vector4) {
}
float Quaternion::Angle() const {
return std::acos(w) * 2.f;
}
Quaternion Quaternion::Normalize() const {
float length = Length();
if (length < 1e-4f)
@@ -165,4 +175,30 @@ namespace LinearAlgebra {
x + rhs.x, y + rhs.y, z + rhs.z,w + rhs.w
};
}
Matrix4x4 Quaternion::ToMatrix4x4() const {
return Matrix4x4(*this);
}
Matrix4x4 Quaternion::ToMatrix4x4(const Vector3 &translation) const {
return {*this, translation};
}
float Quaternion::GetAngle() const {
return std::acos(w) * 2.f;
}
Vector3 Quaternion::GetAxis() const {
float rcpSinAngle = 1 - (std::sqrt(1 - w * w));
return Vector3(x, y, z) * rcpSinAngle;
}
Quaternion::Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion::Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
}

View File

@@ -1,5 +1,30 @@
#include <J3ML/LinearAlgebra/Transform2D.h>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
const Transform2D Transform2D::Identity = Transform2D({0, 0}, {1, 1}, {0,0}, {0,0}, 0);
const Transform2D Transform2D::FlipX = Transform2D({0, 0}, {-1, 1}, {0,0}, {0,0}, 0);
const Transform2D Transform2D::FlipY = Transform2D({0, 0}, {1, -1}, {0,0}, {0,0}, 0);
Vector2 Transform2D::Transform(const Vector2 &input) const {
return transformation.Transform(input);
}
Transform2D::Transform2D(const Matrix3x3 &transform) : transformation(transform) { }
Transform2D::Transform2D(const Vector2& pos, const Vector2& scale, const Vector2& origin, const Vector2& skew, float rotation) {
transformation = Matrix3x3(pos.x, pos.y, rotation, scale.x, scale.y, origin.x, origin.y, skew.x, skew.y);
}
Transform2D Transform2D::Translate(float x, float y) const {
auto copy = Matrix3x3(transformation);
copy.SetAt(0, 0, transformation.At(0, 0) + x);
copy.SetAt(0, 1, transformation.At(0, 1) + y);
return Transform2D(copy);
}
Transform2D Transform2D::Translate(const LinearAlgebra::Vector2 &input) const {
return Translate(input.x, input.y);
}
}

View File

@@ -4,7 +4,7 @@
#include <valarray>
#include <iostream>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
Vector2::Vector2(): x(0), y(0)
{}
@@ -15,12 +15,14 @@ namespace LinearAlgebra {
Vector2::Vector2(const Vector2& rhs): x(rhs.x), y(rhs.y)
{}
float Vector2::operator[](std::size_t index)
float Vector2::operator[](std::size_t index) const
{
assert(index < 2);
if (index == 0) return x;
if (index == 1) return y;
return 0;
return At(index);
}
float &Vector2::operator[](std::size_t index)
{
return At(index);
}
bool Vector2::IsWithinMarginOfError(const Vector2& rhs, float margin) const
@@ -231,5 +233,95 @@ namespace LinearAlgebra {
return *this / scalar;
}
bool Vector2::IsFinite(const Vector2 &v) {
return v.IsFinite();
}
float Vector2::MinElement() const {
return std::min(x, y);
}
float Vector2::MaxElement() const {
return std::max(x, y);
}
Vector2 Vector2::Mul(const Vector2 &v) const {
return {this->x*v.x, this->y*v.y};
}
bool Vector2::IsFinite() const {
return std::isfinite(x) && std::isfinite(y);
}
Vector2 Vector2::Div(const Vector2 &v) const {
return {this->x/v.x, this->y/v.y};
}
Vector2 Vector2::Abs() const { return {std::abs(x), std::abs(y)};}
float *Vector2::ptr() {
return &x;
}
const float *Vector2::ptr() const { return &x;}
const float Vector2::At(std::size_t index) const {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
float &Vector2::At(std::size_t index) {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
Vector2 &Vector2::operator/=(float scalar) {
x /= scalar;
y /= scalar;
return *this;
}
Vector2 &Vector2::operator*=(float scalar) {
x *= scalar;
y *= scalar;
return *this;
}
Vector2 &Vector2::operator-=(const Vector2 &rhs) // Subtracts a vector from this vector, in-place
{
x -= rhs.x;
y -= rhs.y;
return *this;
}
Vector2 &Vector2::operator+=(const Vector2 &rhs) // Adds a vector to this vector, in-place.
{
x += rhs.x;
y += rhs.y;
return *this;
}
Vector2 &Vector2::operator=(const Vector2 &rhs) {
x = rhs.x;
y = rhs.y;
return *this;
}
Vector2::Vector2(const float *data) {
assert(data);
x = data[0];
y = data[1];
}
Vector2::Vector2(float scalar) {
x = scalar;
y = scalar;
}
}

View File

@@ -3,9 +3,7 @@
#include <cassert>
#include <cmath>
namespace LinearAlgebra {
#pragma region vector3
namespace J3ML::LinearAlgebra {
const Vector3 Vector3::Zero = {0,0,0};
const Vector3 Vector3::Up = {0, -1, 0};
@@ -15,6 +13,8 @@ namespace LinearAlgebra {
const Vector3 Vector3::Forward = {0, 0, -1};
const Vector3 Vector3::Backward = {0, 0, 1};
const Vector3 Vector3::NaN = {NAN, NAN, NAN};
const Vector3 Vector3::Infinity = {INFINITY, INFINITY, INFINITY};
const Vector3 Vector3::NegativeInfinity = {-INFINITY, -INFINITY, -INFINITY};
Vector3 Vector3::operator+(const Vector3& rhs) const
{
@@ -80,6 +80,14 @@ namespace LinearAlgebra {
return 0;
}
float &Vector3::operator[](std::size_t index)
{
assert(index < 3);
if (index == 0) return x;
if (index == 1) return y;
if (index == 2) return z;
}
bool Vector3::IsWithinMarginOfError(const Vector3& rhs, float margin) const
{
return this->Distance(rhs) <= margin;
@@ -301,5 +309,49 @@ namespace LinearAlgebra {
return lhs.AngleBetween(rhs);
}
#pragma endregion
Vector3 Vector3::Direction(const Vector3 &rhs) {
float x = (cos(Math::Radians(rhs.y)) * cos(Math::Radians(rhs.x)));
float y = -sin(Math::Radians(rhs.x));
float z = (sin(Math::Radians(rhs.y)) * cos(Math::Radians(rhs.x)));
return {x, y, z};
}
Vector3 Vector3::Abs() const {
return {std::abs(x), std::abs(y), std::abs(z)};
}
float *Vector3::ptr() {
return &x;
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b, Vector3 &c) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
c = c - c.ProjectToNorm(a);
c = c - c.ProjectToNorm(b);
c = c.Normalize();
}
Vector3 Vector3::ProjectToNorm(const Vector3 &direction) const {
return direction * this->Dot(direction);
}
bool Vector3::IsFinite() const {
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
}
Vector3::Vector3(const float *data) {
x = data[0];
y = data[1];
z = data[2];
}
}

View File

@@ -7,8 +7,10 @@
#include <cmath>
#include <algorithm>
namespace LinearAlgebra {
namespace J3ML::LinearAlgebra {
const Vector4 Vector4::Zero = {0,0,0,0};
const Vector4 Vector4::NaN = {NAN, NAN, NAN, NAN};
Vector4::Vector4(): x(0), y(0), z(0), w(0)
{}
@@ -139,6 +141,15 @@ Vector4 Vector4::operator-(const Vector4& rhs) const
}
Vector4 &Vector4::operator=(const Vector4 &rhs) {
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
return *this;
}
}
#pragma endregion

View File

@@ -1,7 +1,7 @@
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector2.h>
using Vector2 = LinearAlgebra::Vector2;
using J3ML::LinearAlgebra::Vector2;
TEST(Vector2Test, V2_Constructor_Default)
{

View File

@@ -1,18 +1,25 @@
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector3.h>
using Vector3 = LinearAlgebra::Vector3;
using J3ML::LinearAlgebra::Vector3;
void EXPECT_V3_EQ(const Vector3& lhs, const Vector3& rhs)
{
EXPECT_FLOAT_EQ(lhs.x, rhs.x);
EXPECT_FLOAT_EQ(lhs.y, rhs.y);
EXPECT_FLOAT_EQ(lhs.z, rhs.z);
}
TEST(Vector3Test, V3_Constructor_Default)
{
EXPECT_EQ(Vector3(), Vector3::Zero);
EXPECT_V3_EQ(Vector3(), Vector3::Zero);
}
TEST(Vector3Test, V3_Constructor_XYZ)
{
Vector3 Input {0, 1, 0};
EXPECT_EQ(Input, Vector3::Down);
EXPECT_V3_EQ(Input, Vector3::Down);
}
TEST(Vector3Test, V3_Addition_Op) {
@@ -21,7 +28,7 @@ TEST(Vector3Test, V3_Addition_Op) {
Vector3 ExpectedResult {3,3,3};
EXPECT_EQ(A + B, ExpectedResult);
EXPECT_V3_EQ(A + B, ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Method) {
Vector3 A {1,1,1};
@@ -29,7 +36,7 @@ TEST(Vector3Test, V3_Addition_Method) {
Vector3 ExpectedResult {3,3,3};
EXPECT_EQ(A.Add(B), ExpectedResult);
EXPECT_V3_EQ(A.Add(B), ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Static) {
Vector3 A {1,1,1};
@@ -37,7 +44,7 @@ TEST(Vector3Test, V3_Addition_Static) {
Vector3 ExpectedResult {4,4,4};
EXPECT_EQ(Vector3::Add(A, B), ExpectedResult);
EXPECT_V3_EQ(Vector3::Add(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Op) {
Vector3 A {2,2,2};
@@ -45,7 +52,7 @@ TEST(Vector3Test, V3_Subtract_Op) {
Vector3 ExpectedResult {1.5f, 1.5f, 1.5f};
EXPECT_EQ(A - B, ExpectedResult);
EXPECT_V3_EQ(A - B, ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Method) {
Vector3 A {3,3,3};
@@ -53,7 +60,7 @@ TEST(Vector3Test, V3_Subtract_Method) {
Vector3 ExpectedResult {2,2,2};
EXPECT_EQ(A.Sub(B), ExpectedResult);
EXPECT_V3_EQ(A.Sub(B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Static) {
Vector3 A {4,4,4};
@@ -61,7 +68,7 @@ TEST(Vector3Test, V3_Subtract_Static) {
Vector3 ExpectedResult {3,3,3};
EXPECT_EQ(Vector3::Sub(A, B), ExpectedResult);
EXPECT_V3_EQ(Vector3::Sub(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Op) {
Vector3 A { 1,1,1};
@@ -69,7 +76,7 @@ TEST(Vector3Test, V3_Scalar_Mult_Op) {
Vector3 ExpectedResult {1.5f, 1.5f, 1.5f};
EXPECT_EQ(A * B, ExpectedResult);
EXPECT_V3_EQ(A * B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Method) {
Vector3 A {3,3,3};
@@ -77,7 +84,7 @@ TEST(Vector3Test, V3_Scalar_Mult_Method) {
Vector3 ExpectedResult {4.5f, 4.5f, 4.5f};
EXPECT_EQ(A.Mul(B), ExpectedResult);
EXPECT_V3_EQ(A.Mul(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Static) {
Vector3 A {2,2,2};
@@ -85,21 +92,21 @@ TEST(Vector3Test, V3_Scalar_Mult_Static) {
Vector3 ExpectedResult {3.f, 3.f, 3.f};
EXPECT_EQ(Vector3::Mul(A, B), ExpectedResult);
EXPECT_V3_EQ(Vector3::Mul(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Op) {
Vector3 A {4,4,4};
float B = 2.f;
Vector3 ExpectedResult {2,2,2};
EXPECT_EQ(A / B, ExpectedResult);
EXPECT_V3_EQ(A / B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Method) {
Vector3 A {6,6,6};
float B = 2.f;
Vector3 ExpectedResult { 3,3,3};
EXPECT_EQ(A.Div(B), ExpectedResult);
EXPECT_V3_EQ(A.Div(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Static) {
Vector3 A {3,3,3};
@@ -107,7 +114,7 @@ TEST(Vector3Test, V3_Scalar_Div_Static) {
Vector3 ExpectedResult { 2.f, 2.f, 2.f};
EXPECT_EQ(Vector3::Div(A, B), ExpectedResult);
EXPECT_V3_EQ(Vector3::Div(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Sizeof) {
EXPECT_EQ(sizeof(Vector3), 12);
@@ -121,14 +128,14 @@ TEST(Vector3Test, V3_Min) {
Vector3 Minimum {3,3,3};
Vector3 ExpectedResult {2,2,2};
EXPECT_EQ(Input.Min(Minimum), ExpectedResult);
EXPECT_V3_EQ(Input.Min(Minimum), ExpectedResult);
}
TEST(Vector3Test, V3_Max) {
Vector3 Input {2,2,2};
Vector3 Maximum {3,3,3};
Vector3 ExpectedResult {3,3,3};
EXPECT_EQ(Input.Max(Maximum), ExpectedResult);
EXPECT_V3_EQ(Input.Max(Maximum), ExpectedResult);
}
TEST(Vector3Test, V3_Clamp) {
Vector3 Input {5,-1,8};
@@ -137,7 +144,7 @@ TEST(Vector3Test, V3_Clamp) {
Vector3 ExpectedResult {5,1,5};
EXPECT_EQ(Input.Clamp(Minimum, Maximum), ExpectedResult);
EXPECT_V3_EQ(Input.Clamp(Minimum, Maximum), ExpectedResult);
}
TEST(Vector3Test, V3_DotProduct) {
@@ -155,7 +162,7 @@ TEST(Vector3Test, V3_CrossProduct) {
Vector3 ExpectedResult {0,0,0};
EXPECT_EQ(A.Cross(B), ExpectedResult);
EXPECT_V3_EQ(A.Cross(B), ExpectedResult);
}
TEST(Vector3Test, V3_Project) {
@@ -167,7 +174,7 @@ TEST(Vector3Test, V3_Normalize) {
Vector3 Input {2, 0, 0};
Vector3 ExpectedResult {1, 0, 0};
EXPECT_EQ(Input, ExpectedResult);
EXPECT_V3_EQ(Input.Normalize(), ExpectedResult);
}
TEST(Vector3Test, V3_Lerp)
{
@@ -175,13 +182,17 @@ TEST(Vector3Test, V3_Lerp)
Vector3 Finish {};
float Percent = 50;
Vector3 ExpectedResult {};
EXPECT_EQ(Start.Lerp(Finish, Percent), ExpectedResult);
EXPECT_V3_EQ(Start.Lerp(Finish, Percent), ExpectedResult);
}
TEST(Vector3Test, V3_AngleBetween) {
using J3ML::LinearAlgebra::Angle2D;
Vector3 A{ .5f, .5f, .5f};
Vector3 B {.25f, .75f, .25f};
A = A.Normalize();
B = B.Normalize();
LinearAlgebra::Angle2D ExpectedResult {0,0};
EXPECT_EQ(A.AngleBetween(B), ExpectedResult);
Angle2D ExpectedResult {-0.69791365, -2.3561945};
std::cout << A.AngleBetween(B).x << ", " << A.AngleBetween(B).y << "";
auto angle = A.AngleBetween(B);
EXPECT_FLOAT_EQ(angle.x, ExpectedResult.x);
EXPECT_FLOAT_EQ(angle.y, ExpectedResult.y);
}

View File

@@ -1,3 +1,106 @@
//
// Created by josh on 12/26/2023.
//
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector4.h>
using Vector4 = J3ML::LinearAlgebra::Vector4;
void EXPECT_V4_EQ(const Vector4& lhs, const Vector4& rhs)
{
}
TEST(Vector4Test, V4_Constructor_Default)
{
EXPECT_V4_EQ(Vector4(), Vector4::Zero);
}
TEST(Vector4Test, V4_Constructor_XYZW)
{
Vector4 Input {0, 1, 0, 1};
EXPECT_FLOAT_EQ(Input.x, 0);
EXPECT_FLOAT_EQ(Input.y, 1);
EXPECT_FLOAT_EQ(Input.z, 0);
EXPECT_FLOAT_EQ(Input.w, 1);
}
TEST(Vector4Test, V4_Addition_Op) {
Vector4 A {1, 1, 1, 1};
Vector4 B {2, 2, 2, 2};
Vector4 ExpectedResult {3, 3, 3, 3};
EXPECT_V4_EQ(A + B, ExpectedResult);
}
TEST(Vector4Test, V4_Addition_Method)
{
}
TEST(Vector4Test, V4_Addition_Static)
{
}
TEST(Vector4Test, V4_Subtract_Op)
{
}
TEST(Vector4Test, V4_Subtract_Method)
{
}
TEST(Vector4Test, V4_Subtract_Static)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Op)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Method)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Static)
{
}
TEST(Vector4Test, V4_Scalar_Div_Op)
{
}
TEST(Vector4Test, V4_Scalar_Div_Method)
{
}
TEST(Vector4Test, V4_Scalar_Div_Static)
{
}
TEST(Vector4Test, V4_Sizeof)
{
}
TEST(Vector4Test, V4_NaN)
{
}
TEST(Vector4Tests, V4_Min) {}
TEST(Vector4Tests, V4_Max) {}
TEST(Vector4Tests, V4_Clamp) {}
TEST(Vector4Tests, V4_DotProduct) {}
TEST(Vector4Tests, V4_CrossProduct) {}
TEST(Vector4Tests, V4_Project) {}
TEST(Vector4Test, V4_Normalize) {}