Compare commits

...

18 Commits

Author SHA1 Message Date
9114dd6886 Merge pull request 'Add AABB v AABB & Triangle v Triangle intersection, and fix dot product' (#27) from Miuna/j3ml-fork:main into main
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m15s
Reviewed-on: #27
2024-05-08 13:35:04 -04:00
Mishura
4830015060 Add triangle SAT intersection 2024-05-08 09:23:20 -04:00
Mishura
ac4538bba5 Fix dot product 2024-05-08 08:32:33 -04:00
Mishura
82cb3d7ee3 Add AABBvAABB interesection & add AABB scale 2024-05-07 14:55:09 -04:00
35e1309d6f Separate implementation
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m4s
2024-04-26 11:52:11 -04:00
ac46c259aa Separate implementation
Some checks failed
Build Docs With Doxygen / Explore-Gitea-Actions (push) Failing after 1m2s
2024-04-25 16:31:48 -04:00
50e99413e5 Fix Spacing
Some checks failed
Build Docs With Doxygen / Explore-Gitea-Actions (push) Has been cancelled
2024-04-25 16:30:44 -04:00
b8d54cc11b Fix Spacing
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m4s
2024-04-25 16:02:43 -04:00
4b3fe2b9e2 Added Quaternion constructors, SetFrom(AxisAngle)
Some checks failed
Build Docs With Doxygen / Explore-Gitea-Actions (push) Has been cancelled
2024-04-25 16:02:32 -04:00
5b356d9d6e Fixed Readme
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m1s
2024-04-10 21:03:59 -04:00
99cedd4987 New Readme
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m2s
2024-04-10 20:58:52 -04:00
0c768cd656 Fix stupid
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m7s
2024-04-10 16:50:29 -04:00
c22e71ca99 Finalized Doxygen Integration
Some checks failed
Build Docs With Doxygen / Explore-Gitea-Actions (push) Failing after 54s
2024-04-10 16:48:44 -04:00
6a20eca378 Merge remote-tracking branch 'origin/main'
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m2s
2024-04-10 16:38:48 -04:00
cb85afb78e Fix Doxyfile 2024-04-10 16:38:40 -04:00
maxbyte9p
6b73b75281 Added doccy workflow
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m2s
2024-04-09 19:37:18 -04:00
1b484d00b5 Added Doxyfile 2024-04-09 17:18:38 -04:00
bbd3e8b75d Implemented More Documentation 2024-04-09 17:07:38 -04:00
29 changed files with 3954 additions and 109 deletions

View File

@@ -0,0 +1,25 @@
name: Build Docs With Doxygen
run-name: Building documentation for ${{ gitea.repository }}.
on: [push]
jobs:
Explore-Gitea-Actions:
runs-on: ubuntu-22.04
steps:
- run: echo "The job was automatically triggered by a ${{ gitea.event_name }} event."
- run: echo "This job is now running on a ${{ runner.os }} server hosted by Gitea!"
- run: echo "The name of your branch is ${{ gitea.ref }} and your repository is ${{ gitea.repository }}."
- name: Check out repository code
uses: actions/checkout@v3
- run: echo "The ${{ gitea.repository }} repository has been cloned to the runner."
- run: echo "The workflow is now ready to build your docs on the runner."
- run: echo "Copying SSH key for file transfer into runner."
- run: echo "${{ secrets.SSHKEY }}" > /id_rsa
- run: chmod 600 /id_rsa
- run: echo "Installing doxygen on runner."
- run: apt-get update && apt-get install -y doxygen
- run: echo "Building documentation."
- run: doxygen Doxyfile
- run: echo "Copying built documentation to doc site."
- run: scp -o "IdentitiesOnly=yes" -o "StrictHostKeyChecking=no" -i /id_rsa -P ${{ secrets.SSHPORT }} -r html ${{ secrets.SSHUSER }}@${{ secrets.SSHIP }}:/var/www/html/$(echo "${{ gitea.repository }}" | cut -f 2 -d '/')
- run: echo "This job's status is ${{ job.status }}."

2782
Doxyfile Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,60 @@
# Josh's 3D Math Library - J3ML
Yet Another C++ Math Standard
## Motivation
This project was sparked by a desire to gain a deeper understanding into the math underlying computer graphics. While packages such as glm, eigen, etc. are amazing libraries, it removes the fun of having to learn it the hard way.
J3ML is a "Modern C++" C++ library designed to provide comprehensive support for 3D mathematical operations commonly used in computer graphics, game development, physics simulations, and related fields. It offers a wide range of functionalities to simplify the implementation of complex mathematical operations in your projects.
![Static Badge](https://img.shields.io/badge/Lit-Based-%20)
## Use Cases
## Features
### LinearAlgebra
#### Vectors
#### Matrices
#### Conversion Types
### Geometry
## Samples
## Bugs / Issues
## Compilation
* <b>Vector Operations:</b> Comprehensive support for 3D vector operations including addition, subtraction, scalar multiplication, dot product, cross product, normalization, and more.
* **Matrix Operations:** Efficient implementation of 3x3 and 4x4 matrices with support for common operations such as multiplication, transpose, determinant calculation, and inverse calculation.
* **Quaternion Operations:** Quaternion manipulation functions including conversion to/from axis-angle representation, quaternion multiplication, normalization, and interpolation (slerp).
* **Transformation Functions:** Functions for transforming points, vectors, and normals using matrices and quaternions.
* **Geometric Types:** Support for geometric types such as points, lines, rays, planes, spheres, axis-aligned bounding boxes (AABB), and oriented bounding boxes (OBB).
* **Algorithms:** Implementation of various algorithms including Gilbert-Johnson-Keerthi (GJK) algorithm for collision detection, random number generator, and more.
* **Utility Functions:** Additional utilities such as conversion between degrees and radians, random number generation, and common constants.
# Usage
To use J3ML in your C++ project, simply include the necessary header files and link against the library. Here's a basic example of how to use the library to perform vector addition:
```cpp
#include <iostream>
#include <j3ml/LinearAlgebra.h>
int main() {
// Create two 3D vectors
Vector3 v1(1.0, 2.0, 3.0);
Vector3 v2(4.0, 5.0, 6.0);
// Perform vector addition
Vector3 result = v1 + v2;
// Output the result
std::cout << "Result: " << result << std::endl;
return 0;
}
```
For more detailed usage instructions and examples, please refer to the documentation.
# Documentation
Documentation is automatically generated from latest commit and is hosted at https://doc.redacted.cc/j3ml .
# Contributing
Contributions to J3ML are welcome! If you find a bug, have a feature request, or would like to contribute code, please submit an issue or pull request to the GitHub repository.
# License
J3ML is licensed under the Public Domain. See the LICENSE file for details.
# Acknowledgements
J3ML is developed and maintained by Joshua O'Leary from Redacted Software and contributors. Special thanks to William J Tomasine II.

View File

@@ -0,0 +1,7 @@
#pragma once
namespace J3ML::Algorithm
{
}

View File

@@ -1,5 +1,7 @@
#pragma once
#include <optional>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Shape.h>
@@ -8,96 +10,199 @@
namespace J3ML::Geometry
{
using namespace J3ML::LinearAlgebra;
using J3ML::Algorithm::RNG;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
// intersection queries.
// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
/// @brief A 3D axis-aligned bounding box.
/// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
/// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
/// intersection queries.
/// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
/// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
/// be arbitrarily oriented in the space with respect to each other.
/// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB : public Shape {
public:
/// Specifies the minimum extent of this AABB in the world space x, y and z axes.
Vector3 minPoint;
/// Specifies the maximum extent of this AABB in the world space x, y and z axes. [similarOverload: minPoint]
Vector3 maxPoint;
public:
static int NumFaces() { return 6; }
static int NumEdges() { return 12; }
static int NumVertices() { return 8; }
public:
/// The default constructor does not initialize any members of this class.
/** This means that the values of the members minPoint and maxPoint are undefined after creating a new AABB using this
default constructor. Remember to assign to them before use.
@see minPoint, maxPoint. */
AABB();
/// Constructs this AABB by specifying the minimum and maximum extending corners of the box.
/** @see minPoint, maxPoint. */
AABB(const Vector3& min, const Vector3& max);
/// Constructs this AABB to enclose the given OBB.
/** This constructor computes the optimal minimum volume AABB that encloses the given OBB.
@note Since an AABB cannot generally represent an OBB, this conversion is not exact, but the returned AABB
specifies a larger volume.
@see class OBB. */
explicit AABB(const OBB &obb);
/// Constructs this AABB to enclose the given Sphere.
/** @see class Sphere. */
explicit AABB(const Sphere &s);
Vector3 HalfDiagonal() const { return HalfSize(); }
static AABB FromCenterAndSize(const Vector3 &center, const Vector3 &size);
/// Returns the minimum world-space coordinate along the given axis.
float MinX() const;
float MinY() const;
float MinZ() const;
float MinY() const; ///< [similarOverload: MinX]
float MinZ() const; ///< [similarOverload: MinX]
/// Returns the maximum world-space coordinate along the given axis.
float MaxX() const;
float MaxY() const;
float MaxZ() const;
float MaxY() const; ///< [similarOverload: MaxX]
float MaxZ() const; ///< [similarOverload: MaxX]
/// Returns the smallest sphere that contains this AABB.
/// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const;
/// [similarOverload: Size]
/** Returns Size()/2.
@see Size(), HalfDiagonal(). */
Vector3 HalfSize() const;
/// Returns the largest sphere that can fit inside this AABB
/// This function computes the largest sphere that can fit inside this AABB.
Sphere MaximalContainedSphere() const;
/// Tests if this AABB is finite.
/** @return True if the member variables of this AABB are valid floats and do not contain NaNs or infs, and false otherwise.
@see IsDegenerate(), minPoint, maxPoint. */
bool IsFinite() const;
/// @return The center point of this AABB.
Vector3 Centroid() const;
/// Returns the side lengths of this AABB in x, y and z directions.
/** The returned vector is equal to the diagonal vector of this AABB, i.e. it spans from the
minimum corner of the AABB to the maximum corner of the AABB.
@see HalfSize(), Diagonal(). */
Vector3 Size() const;
// Quickly returns an arbitrary point inside this AABB
Vector3 AnyPointFast() const;
/// Generates a point inside this AABB.
/** @param x A normalized value between [0,1]. This specifies the point position along the world x axis.
@param y A normalized value between [0,1]. This specifies the point position along the world y axis.
@param z A normalized value between [0,1]. This specifies the point position along the world z axis.
@return A point inside this AABB at point specified by given parameters.
@see Edge(), CornerPoint(), PointOnEdge(), FaceCenterPoint(), FacePoint(). */
Vector3 PointInside(float x, float y, float z) const;
// Returns an edge of this AABB
LineSegment Edge(int edgeIndex) const;
/// Returns a corner point of this AABB.
/** This function generates one of the eight corner points of this AABB.
@param cornerIndex The index of the corner point to generate, in the range [0, 7].
The points are returned in the order 0: ---, 1: --+, 2: -+-, 3: -++, 4: +--, 5: +-+, 6: ++-, 7: +++. (corresponding the XYZ axis directions).
@todo Draw which index generates which corner point.
@see PointInside(), Edge(), PointOnEdge(), FaceCenterPoint(), FacePoint(), GetCornerPoints(). */
Vector3 CornerPoint(int cornerIndex) const;
/// Computes an extreme point of this AABB in the given direction.
/** An extreme point is a farthest point of this AABB in the given direction. Given a direction,
this point is not necessarily unique.
@param direction The direction vector of the direction to find the extreme point. This vector may
be unnormalized, but may not be null.
@return An extreme point of this AABB in the given direction. The returned point is always a
corner point of this AABB.
@see CornerPoint(). */
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
/// Returns a point on an edge of this AABB.
/** @param edgeIndex The index of the edge to generate a point to, in the range [0, 11]. @todo Document which index generates which one.
@param u A normalized value between [0,1]. This specifies the relative distance of the point along the edge.
@see PointInside(), CornerPoint(), CornerPoint(), FaceCenterPoint(), FacePoint(). */
Vector3 PointOnEdge(int edgeIndex, float u) const;
/// Returns the point at the center of the given face of this AABB.
/** @param faceIndex The index of the AABB face to generate the point at. The valid range is [0, 5].
This index corresponds to the planes in the order (-X, +X, -Y, +Y, -Z, +Z).
@see PointInside(), CornerPoint(), PointOnEdge(), PointOnEdge(), FacePoint(). */
Vector3 FaceCenterPoint(int faceIndex) const;
/// Generates a point at the surface of the given face of this AABB.
/** @param faceIndex The index of the AABB face to generate the point at. The valid range is [0, 5].
This index corresponds to the planes in the order (-X, +X, -Y, +Y, -Z, +Z).
@param u A normalized value between [0, 1].
@param v A normalized value between [0, 1].
@see PointInside(), CornerPoint(), PointOnEdge(), PointOnEdge(), FaceCenterPoint(). */
Vector3 FacePoint(int faceIndex, float u, float v) const;
/// Returns the surface normal direction vector the given face points towards.
/** @param faceIndex The index of the AABB face to generate the point at. The valid range is [0, 5].
This index corresponds to the planes in the order (-X, +X, -Y, +Y, -Z, +Z).
@see FacePoint(), FacePlane(). */
Vector3 FaceNormal(int faceIndex) const;
/// Computes the plane equation of the given face of this AABB.
/** @param faceIndex The index of the AABB face. The valid range is [0, 5].
This index corresponds to the planes in the order (-X, +X, -Y, +Y, -Z, +Z).
@return The plane equation the specified face lies on. The normal of this plane points outwards from this AABB.
@see FacePoint(), FaceNormal(), GetFacePlanes(). */
Plane FacePlane(int faceIndex) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
/// Generates an AABB that encloses the given point set.
/** This function finds the smallest AABB that contains the given set of points.
@param pointArray A pointer to an array of points to enclose inside an AABB.
@param numPoints The number of elements in the pointArray list.
@see SetFrom(). */
static AABB MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints);
float GetVolume() const;
float GetSurfaceArea() const;
AABB MinimalEnclosingAABB() const { return *this;}
/// Computes the volume of this AABB.
/** @see SurfaceArea(), IsDegenerate(). */
float Volume() const;
/// Computes the surface area of the faces of this AABB.
/** @see Volume(). */
float SurfaceArea() const;
Vector3 GetClosestPoint(const Vector3& point) const;
void Translate(const Vector3& offset);
AABB Translated(const Vector3& offset) const;
void Scale(const Vector3& scale);
AABB Scaled(const Vector3& scale) const;
AABB TransformAABB(const Matrix3x3& transform);
AABB TransformAABB(const Matrix4x4& transform);
AABB TransformAABB(const Quaternion& transform);
/// Applies a transformation to this AABB and returns the resulting OBB.
/** Transforming an AABB produces an oriented bounding box. This set of functions does not apply the transformation
to this object itself, but instead returns the OBB that results in the transformation.
@param transform The transformation to apply to this AABB. This function assumes that this
transformation does not contain shear, nonuniform scaling or perspective properties, i.e. that the fourth
row of the float4x4 is [0 0 0 1].
@see Translate(), Scale(), TransformAsAABB(), classes float3x3, float3x4, float4x4, Quat. */
OBB Transform(const Matrix3x3& transform) const;
OBB Transform(const Matrix4x4& transform) const;
OBB Transform(const Quaternion& transform) const;
/// Tests if the given object is fully contained inside this AABB.
/** This function returns true if the given object lies inside this AABB, and false otherwise.
@note The comparison is performed using less-or-equal, so the faces of this AABB count as being inside, but
due to float inaccuracies, this cannot generally be relied upon.
@todo Add Contains(Circle/Disc/Sphere/Capsule).
@see Distance(), Intersects(), ClosestPoint(). */
bool Contains(const Vector3& point) const;
bool Contains(const Vector3& aabbMinPoint, const Vector3& aabbMaxPoint) const;
bool Contains(const LineSegment& lineSegment) const;
@@ -109,27 +214,94 @@ namespace J3ML::Geometry
bool Contains(const Frustum& frustum) const;
bool Contains(const Polyhedron& polyhedron) const;
bool Contains(const Capsule& capsule) const;
// Tests whether this AABB and the given object intersect.
/// Tests whether this AABB and the given object intersect.
/** Both objects are treated as "solid", meaning that if one of the objects is fully contained inside
another, this function still returns true. (e.g. in case a line segment is contained inside this AABB,
or this AABB is contained inside a Sphere, etc.)
@param ray The first parameter of this function specifies the other object to test against.
@param dNear [out] If specified, receives the parametric distance along the line denoting where the
line entered this AABB.
@param dFar [out] If specified, receives the parametric distance along the line denoting where the
line exited this AABB.
@see Contains(), Distance(), ClosestPoint().
@note If you do not need the intersection intervals, you should call the functions without these
parameters in the function signature for optimal performance.
@todo Add Intersects(Circle/Disc). */
bool Intersects(const Ray& ray, float dNear, float dFar) const;
bool Intersects(const Capsule& capsule) const;
bool Intersects(const Triangle& triangle) const;
bool Intersects(const Polygon& polygon) const;
bool Intersects(const Frustum& frustum) const;
bool Intersects(const Polyhedron& polyhedron) const;
bool Intersects(const AABB& aabb) const;
/** For reference documentation on the Sphere-AABB intersection test, see Christer Ericson's Real-Time Collision Detection, p. 165. [groupSyntax]
@param sphere The first parameter of this function specifies the other object to test against.
@param closestPointOnAABB [out] Returns the closest point on this AABB to the given sphere. This pointer
may be null. */
bool Intersects(const Sphere &sphere, Vector3 *closestPointOnAABB = 0) const;
/// Generates an unindexed triangle mesh representation of this AABB.
/** @param numFacesX The number of faces to generate along the X axis. This value must be >= 1.
@param numFacesY The number of faces to generate along the Y axis. This value must be >= 1.
@param numFacesZ The number of faces to generate along the Z axis. This value must be >= 1.
@param outPos [out] An array of size numVertices which will receive a triangle list
of vertex positions. Cannot be null.
@param outNormal [out] An array of size numVertices which will receive vertex normals.
If this parameter is null, vertex normals are not returned.
@param outUV [out] An array of size numVertices which will receive vertex UV coordinates.
If this parameter is null, a UV mapping is not generated.
@param ccwIsFrontFacing If true, then the front-facing direction of the faces will be the sides
with counterclockwise winding order. Otherwise, the faces are generated in clockwise winding order.
The number of vertices that outPos, outNormal and outUV must be able to contain is
(x*y + x*z + y*z)*2*6. If x==y==z==1, then a total of 36 vertices are required. Call
NumVerticesInTriangulation to obtain this value.
@see ToPolyhedron(), ToEdgeList(), NumVerticesInTriangulation(). */
TriangleMesh Triangulate(int numFacesX, int numFacesY, int numFacesZ, bool ccwIsFrontFacing) const;
/// Returns the number of vertices that the Triangulate() function will output with the given subdivision parameters.
/** @see Triangulate(). */
static int NumVerticesInTriangulation(int numFacesX, int numFacesY, int numFacesZ)
{
return (numFacesX*numFacesY + numFacesX*numFacesZ + numFacesY*numFacesZ)*2*6;
}
/// Returns the number of vertices that the ToEdgeList() function will output.
/** @see ToEdgeList(). */
static int NumVerticesInEdgeList()
{
return 4*3*2;
}
/// Finds the set intersection of this and the given AABB.
/** @return This function returns the AABB that is contained in both this and the given AABB.
/** @return This function returns an intersection that is contained in both this and the given AABB if there is one.
@todo Add Intersection(OBB/Polyhedron). */
AABB Intersection(const AABB& rhs) const;
std::optional<AABB> Intersection(const AABB& rhs) const;
/// Sets this AABB to enclose the given set of points.
/** @param pointArray A pointer to an array of points to enclose inside an AABB.
@param numPoints The number of elements in the pointArray list.
@see MinimalEnclosingAABB(). */
void SetFrom(const Vector3 *pVector3, int i);
/// Sets this AABB by specifying its center and size.
/** @param center The center point of this AABB.
@param size A vector that specifies the size of this AABB in x, y and z directions.
@see SetFrom(), FromCenterAndSize(). */
void SetFromCenterAndSize(const Vector3 &center, const Vector3 &size);
/// Sets this AABB to enclose the given OBB.
/** This function computes the minimal axis-aligned bounding box for the given oriented bounding box. If the orientation
of the OBB is not aligned with the world axes, this conversion is not exact and loosens the volume of the bounding box.
@param obb The oriented bounding box to convert into this AABB.
@todo Implement SetFrom(Polyhedron).
@see SetCenter(), class OBB. */
void SetFrom(const OBB &obb);
/// Sets this AABB to enclose the given sphere.
/** This function computes the smallest possible AABB (in terms of volume) that contains the given sphere, and stores the result in this structure. */
void SetFrom(const Sphere &s);
Vector3 GetRandomPointInside(RNG& rng) const;
@@ -137,15 +309,28 @@ namespace J3ML::Geometry
Vector3 GetRandomPointOnEdge(RNG& rng) const;
Vector3 GetRandomCornerPoint(RNG& rng) const;
/// Sets this structure to a degenerate AABB that does not have any volume.
/** This function is useful for initializing the AABB to "null" before a loop of calls to Enclose(),
which incrementally expands the bounds of this AABB to enclose the given objects.
@see Enclose(). */
void SetNegativeInfinity();
/// Expands this AABB to enclose the given object.
/** This function computes an AABB that encloses both this AABB and the specified object, and stores the resulting
AABB into this.
@note The generated AABB is not necessarily the optimal enclosing AABB for this AABB and the given object. */
void Enclose(const Vector3 &point);
void Enclose(const Vector3 &aabbMinPt, const Vector3 &aabbMaxPt);
void Enclose(const LineSegment &lineSegment);
void Enclose(const OBB &obb);
void Enclose(const Sphere &sphere);
void Enclose(const Triangle &triangle);
void Enclose(const Capsule &capsule);
void Enclose(const Frustum &frustum);
void Enclose(const Polygon &polygon);
void Enclose(const Polyhedron &polyhedron);
void Enclose(const Vector3 *pointArray, int numPoints);
bool TestAxis(const Vector3& axis, const Vector3& v0, const Vector3& v1, const Vector3& v2) const;

View File

@@ -2,7 +2,7 @@
#include "LineSegment.h"
#include "Shape.h"
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/Common.h>
namespace J3ML::Geometry
@@ -16,7 +16,7 @@ namespace J3ML::Geometry
b = std::move(temp);
}
using namespace LinearAlgebra;
/// A 3D cylinder with spherical ends.
class Capsule : public Shape
{
public:
@@ -25,13 +25,39 @@ namespace J3ML::Geometry
// Specifies the radius of this capsule
float r;
public:
/// The default constructor does not initialize any members of this class.
/** This means that the values of the members l and r are both undefined after creating a new capsule using
this default constructor. Remember to assign to them before use.
@see l, r. */
Capsule();
/// Constructs a new capsule by explicitly specifying the member variables.
/** @param endPoints Specifies the line segment of the capsule.
@param radius Specifies the size of this capsule.
@see l, r. */
Capsule(const LineSegment& endPoints, float radius);
/// Constructs a new capsule by explicitly specifying the member variables.
/** This constructor is equivalent to calling Capsule(LineSegment(bottomPoint, topPoint), radius), but provided
here for conveniency.
@see l, r. */
Capsule(const Vector3& bottomPt, const Vector3& topPt, float radius);
/// Quickly returns an arbitrary point inside this Capsule. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return l.A; }
/// Generates a point that perhaps lies inside this capsule.
/** @param height A normalized value between [0,1]. This specifies the point position along the height line of this capsule.
@param x A normalized value between [0,1]. This specifies the x coordinate on the plane of the circle cross-section specified by l.
@param y A normalized value between [0,1]. This specifies the y coordinate on the plane of the circle cross-section specified by l.
@note This function will generate points uniformly, but they do not necessarily lie inside the capsule.
@see PointInside(). */
Vector3 UniformPointPerhapsInside(float height, float x, float y) const;
/// Returns the Sphere defining the 'bottom' section of this Capsule (corresponding to the endpoint l.a)
Sphere SphereA() const;
/// Returns the Sphere defining the 'top' section of this Capsule (corresponding to the endpoint l.b)
Sphere SphereB() const;
/// Computes the extreme point of this Capsule in the given direction.
/** An extreme point is a farthest point of this Capsule in the given direction. Given a direction,
this point is not necessarily unique.
@@ -40,40 +66,135 @@ namespace J3ML::Geometry
@return The extreme point of this Capsule in the given direction. */
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
/// Tests if this Capsule is degenerate.
/** @return True if this Capsule does not span a strictly positive volume. */
bool IsDegenerate() const;
/// Computes the total height of this capsule, i.e. LineLength() + Diameter().
/** <img src="CapsuleFunctions.png" />
@see LineLength(). */
float Height() const;
/// Computes the diameter of this capsule.
float Diameter() const;
/// Returns the bottom-most point of this Capsule.
/** <img src="CapsuleFunctions.png" />
@note The bottom-most point is only a naming convention, and does not correspond to the bottom-most point along any world axis. The returned
point is simply the point at the far end of this Capsule where the point l.a resides.
@note The bottom-most point of the capsule is different than the point l.a. The returned point is the point at the very far
edge of this capsule, and does not lie on the internal line. See the attached diagram.
@see Top(), l. */
Vector3 Bottom() const;
/// Returns the center point of this Capsule.
/** <img src="doc/static/docs/CapsuleFunctions.png" />
@return The point (l.a + l.b) / 2. This point is the center of mass for this capsule.
@see l, Bottom(), Top(). */
Vector3 Center() const;
Vector3 Centroid() const;
Vector3 Centroid() const; ///< [similarOverload: Center]
/// Returns the direction from the bottommost point towards the topmost point of this Capsule.
/** <img src="CapsuleFunctions.png" />
@return The normalized direction vector from l.a to l.b.
@see l. */
Vector3 UpDirection() const;
/// Computes the volume of this Capsule.
/** @return pi * r^2 * |b-a| + 4 * pi * r^2 / 3.
@see SurfaceArea(). */
float Volume() const;
/// Computes the surface area of this Capsule.
/** @return 2 * pi * r * |b-a| + 4 * pi * r^2.
@see Volume(). */
float SurfaceArea() const;
/// Returns the cross-section circle at the given height of this Capsule.
/** <img src="CapsuleFunctions.png" />
@param l A normalized parameter between [0,1]. l == 0 returns a degenerate circle of radius 0 at the bottom of this Capsule, and l == 1
will return a degenerate circle of radius 0 at the top of this Capsule. */
//Circle CrossSection(float l) const;
Vector3 ExtremePoint(const Vector3& direction);
/// Returns the smallest AABB that encloses this capsule.
/** @see MinimalEnclosingOBB(). */
AABB MinimalEnclosingAABB() const;
/// Returns the smallest OBB that encloses this capsule.
/** @see MinimalEnclosingAABB(). */
OBB MinimalEnclosingOBB() const;
/// Projects this Capsule onto the given 1D axis direction vector.
/** This function collapses this Capsule onto an 1D axis for the purposes of e.g. separate axis test computations.
The function returns a 1D range [outMin, outMax] denoting the interval of the projection.
@param direction The 1D axis to project to. This vector may be unnormalized, in which case the output
of this function gets scaled by the length of this vector.
@param outMin [out] Returns the minimum extent of this object along the projection axis.
@param outMax [out] Returns the maximum extent of this object along the projection axis. */
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
/// Returns the topmost point of this Capsule.
/** <img src="CapsuleFunctions.png" />
@note The topmost point is only a naming convention, and does not correspond to the topmost point along any world axis. The returned
point is simply the point at the far end of this Capsule where the point l.b resides.
@note The topmost point of the capsule is different than the point l.b. The returned point is the point at the very far
edge of this capsule, and does not lie on the internal line. See the attached diagram.
@see Bottom(), l. */
Vector3 Top() const;
/// Applies a transformation to this capsule.
/** @param transform The transformation to apply to this capsule. This transformation must be
affine, and must contain an orthogonal set of column vectors (may not contain shear or projection).
The transformation can only contain uniform scale, and may not contain mirroring.
@see Translate(), Scale(), classes Matrix3x3, Matrix4x4, Quaternion. */
void Transform(const Matrix3x3 &transform);
void Transform(const Matrix4x4 &transform);
void Transform(const Quaternion &transform);
/// Computes the closest point inside this capsule to the given point.
/** If the target point lies inside this capsule, then that point is returned.
@see Distance(), Contains(), Intersects().
@todo Add ClosestPoint(Line/Ray/LineSegment/Plane/Triangle/Polygon/Circle/Disc/AABB/OBB/Sphere/Capsule/Frustum/Polyhedron). */
Vector3 ClosestPoint(const Vector3 &targetPoint) const;
/// Computes the distance between this capsule and the given object.
/** This function finds the nearest pair of points on this and the given object, and computes their distance.
If the two objects intersect, or one object is contained inside the other, the returned distance is zero.
@todo Add Distance(Triangle/Polygon/Circle/Disc/Capsule).
@see Contains(), Intersects(), ClosestPoint(). */
float Distance(const Vector3 &point) const;
float Distance(const Plane &plane) const;
float Distance(const Sphere &sphere) const;
float Distance(const Ray &ray) const;
float Distance(const Line &line) const;
float Distance(const LineSegment &lineSegment) const;
float Distance(const Capsule &capsule) const;
/// Tests if the given object is fully contained inside this capsule.
/** This function returns true if the given object lies inside this capsule, and false otherwise.
@note The comparison is performed using less-or-equal, so the surface of this capsule count as being inside, but
due to float inaccuracies, this cannot generally be relied upon.
@todo Add Contains(Circle/Disc/Sphere/Capsule).
@see Distance(), Intersects(), ClosestPoint(). */
bool Contains(const Vector3 &point) const;
bool Contains(const LineSegment &lineSegment) const;
bool Contains(const Triangle &triangle) const;
bool Contains(const Polygon &polygon) const;
bool Contains(const AABB &aabb) const;
bool Contains(const OBB &obb) const;
bool Contains(const Frustum &frustum) const;
bool Contains(const Polyhedron &polyhedron) const;
bool Intersects(const Plane &plane) const;
bool Intersects(const Ray &ray) const;
bool Intersects(const Line &line) const;
bool Intersects(const LineSegment &lineSegment) const;
bool Intersects(const AABB &aabb) const;
bool Intersects(const OBB &obb) const;
bool Intersects(const Sphere &sphere) const;
bool Intersects(const Capsule &capsule) const;
bool Intersects(const Triangle &triangle) const;
bool Intersects(const Polygon &polygon) const;
bool Intersects(const Frustum &frustum) const;
bool Intersects(const Polyhedron &polyhedron) const;
};
}

View File

@@ -27,5 +27,13 @@ namespace J3ML::Geometry
// Methods required by Geometry types
namespace J3ML::Geometry
{
// Represents a segment along an axis, with the axis as a unit
struct Interval {
float min;
float max;
bool Intersects(const Interval& rhs) const;
bool operator==(const Interval& rhs) const = default;
};
}

View File

@@ -51,7 +51,7 @@ namespace J3ML::Geometry
D3D,
};
/// The handedness rule in J3ML bundles together two different conventions related to the camera:
/// @brief The handedness rule in J3ML bundles together two different conventions related to the camera:
/// * the chirality of the world and view spaces,
/// * the fixed local front direction of the Frustum.
/// @note The world and view spaces are always assumed to the same chirality, meaning that Frustum::ViewMatrix()
@@ -74,10 +74,12 @@ namespace J3ML::Geometry
Right
};
/// Represents either an orthographic or a perspective viewing frustum.
/// @brief Represents either an orthographic or a perspective viewing frustum.
/// @see FrustumType
/// @see FrustumProjectiveSpace
/// @see FrustumHandedness
class Frustum : public Shape {
public: /// Members
public: // Members
/// Specifies whether this frustum is a perspective or an orthographic frustum.
FrustumType type;
@@ -138,85 +140,228 @@ namespace J3ML::Geometry
Matrix4x4 worldMatrix;
Matrix4x4 projectionMatrix;
Matrix4x4 viewProjectionMatrix;
public: /// Methods
Frustum()
: type(FrustumType::Invalid),
pos(Vector3::NaN),
front(Vector3::NaN),
up(Vector3::NaN),
nearPlaneDistance(NAN),
farPlaneDistance(NAN),
worldMatrix(Matrix4x4::NaN),
viewProjectionMatrix(Matrix4x4::NaN)
{
// For conveniency, allow automatic initialization of the graphics API and handedness in use.
// If neither of the #defines are set, user must specify per-instance.
}
public:
/// The default constructor creates an uninitialized Frustum object.
/** This means that the values of the members type, projectiveSpace, handedness, pos, front, up, nearPlaneDistance, farPlaneDistance, horizontalFov/orthographicWidth and
verticalFov/orthographicHeight are all NaN after creating a new Frustum using this
default constructor. Remember to assign to them before use.
@note As an exception to other classes in MathGeoLib, this class initializes its members to NaNs, whereas the other classes leave the members uninitialized. This difference
is because the Frustum class implements a caching mechanism where world, projection and viewProj matrices are recomputed on demand, which does not work nicely together
if the defaults were uninitialized.
*/
Frustum();
/// Quickly returns an arbitrary point inside this Frustum. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return CornerPoint(0); }
static Frustum CreateFrustumFromCamera(const CoordinateFrame& cam, float aspect, float fovY, float zNear, float zFar);
/// Returns the tightest AABB that contains this Frustum.
/** This function computes the optimal minimum volume AABB that encloses this Frustum.
@note Since an AABB cannot generally represent a Frustum, this conversion is not exact, but the returned AABB
specifies a larger volume.
@see MinimalEnclosingOBB(), ToPolyhedron(). */
AABB MinimalEnclosingAABB() const;
/// Returns the tightest OBB that encloses this Frustum.
/** This function computes the optimal minimum volume OBB that encloses this Frustum.
@note If the type of this frustum is Perspective, this conversion is not exact, but the returned OBB specifies
a larger volume. If the type of this Frustum is orthographic, this conversion is exact, since the shape of an
orthographic Frustum is an OBB.
@see MinimalEnclosingAABB(), ToPolyhedron(). */
OBB MinimalEnclosingOBB() const;
/// Sets the type of this Frustum.
/** @note Calling this function recomputes the cached view and projection matrices of this Frustum.
@see SetViewPlaneDistances(), SetFrame(), SetPos(), SetFront(), SetUp(), SetPerspective(), SetOrthographic(), ProjectiveSpace(), Handedness(). */
void SetKind(FrustumProjectiveSpace projectiveSpace, FrustumHandedness handedness);
/// Sets the depth clip distances of this Frustum.
/** @param nearPlaneDistance The z distance from the eye point to the position of the Frustum near clip plane. Always pass a positive value here.
@param farPlaneDistance The z distance from the eye point to the position of the Frustum far clip plane. Always pass a value that is larger than nearClipDistance.
@note Calling this function recomputes the cached projection matrix of this Frustum.
@see SetKind(), SetFrame(), SetPos(), SetFront(), SetUp(), SetPerspective(), SetOrthographic(), NearPlaneDistance(), FarPlaneDistance(). */
void SetViewPlaneDistances(float nearPlaneDistance, float farPlaneDistance);
/// Specifies the full coordinate space of this Frustum in one call.
/** @note Calling this function recomputes the cached world matrix of this Frustum.
@note As a micro-optimization, prefer this function over the individual SetPos/SetFront/SetUp functions if you need to do a batch of two or more changes, to avoid
redundant recomputation of the world matrix.
@see SetKind(), SetViewPlaneDistances(), SetPos(), SetFront(), SetUp(), SetPerspective(), SetOrthographic(), Pos(), Front(), Up(). */
void SetFrame(const Vector3& pos, const Vector3& front, const Vector3& up);
/// Sets the world-space position of this Frustum.
/** @note Calling this function recomputes the cached world matrix of this Frustum.
@see SetKind(), SetViewPlaneDistances(), SetFrame(), SetFront(), SetUp(), SetPerspective(), SetOrthographic(), Pos(). */
void SetPos(const Vector3& pos);
/// Sets the world-space direction the Frustum eye is looking towards.
/** @note Calling this function recomputes the cached world matrix of this Frustum.
@see SetKind(), SetViewPlaneDistances(), SetFrame(), SetPos(), SetUp(), SetPerspective(), SetOrthographic(), Front(). */
void SetFront(const Vector3& front);
/// Sets the world-space camera up direction vector of this Frustum.
/** @note Calling this function recomputes the cached world matrix of this Frustum.
@see SetKind(), SetViewPlaneDistances(), SetFrame(), SetPos(), SetFront(), SetPerspective(), SetOrthographic(), Up(). */
void SetUp(const Vector3& up);
/// Makes this Frustum use a perspective projection formula with the given FOV parameters.
/** A Frustum that uses the perspective projection is shaped like a pyramid that is cut from the top, and has a
base with a rectangular area.
@note Calling this function recomputes the cached projection matrix of this Frustum.
@see SetKind(), SetViewPlaneDistances(), SetFrame(), SetPos(), SetFront(), SetUp(), SetOrthographic(), HorizontalFov(), VerticalFov(), SetHorizontalFovAndAspectRatio(), SetVerticalFovAndAspectRatio(). */
void SetPerspective(float horizontalFov, float verticalFov);
/// Makes this Frustum use an orthographic projection formula with the given FOV parameters.
/** A Frustum that uses the orthographic projection is shaded like a cube (an OBB).
@note Calling this function recomputes the cached projection matrix of this Frustum.
@see SetKind(), SetViewPlaneDistances(), SetFrame(), SetPos(), SetFront(), SetUp(), SetOrthographic(), OrthographicWidth(), OrthographicHeight(). */
void SetOrthographic(float orthographicWidth, float orthographicHeight);
/// Returns the handedness of the projection formula used by this Frustum.
/** @see SetKind(), FrustumHandedness. */
FrustumHandedness Handedness() const { return handedness; }
/// Returns the type of the projection formula used by this Frustum.
/** @see SetPerspective(), SetOrthographic(), FrustumType. */
FrustumType Type() const { return type; }
/// Returns the convention of the post-projective space used by this Frustum.
/** @see SetKind(), FrustumProjectiveSpace. */
FrustumProjectiveSpace ProjectiveSpace() const { return projectiveSpace;}
/// Returns the world-space position of this Frustum.
/** @see SetPos(), Front(), Up(). */
const Vector3 &Pos() const {return pos;}
/// Returns the world-space camera look-at direction of this Frustum.
/** @see Pos(), SetFront(), Up(). */
const Vector3 &Front() const { return front; }
/// Returns the world-space camera up direction of this Frustum.
/** @see Pos(), Front(), SetUp(). */
const Vector3 &Up() const { return up; }
/// Returns the distance from the Frustum eye to the near clip plane.
/** @see SetViewPlaneDistances(), FarPlaneDistance(). */
float NearPlaneDistance() const { return nearPlaneDistance; }
/// Returns the distance from the Frustum eye to the far clip plane.
/** @see SetViewPlaneDistances(), NearPlaneDistance(). */
float FarPlaneDistance() const { return farPlaneDistance;}
/// Returns the horizontal field-of-view used by this Frustum, in radians.
/** @note Calling this function when the Frustum is not set to use perspective projection will return values that are meaningless.
@see SetPerspective(), Type(), VerticalFov(). */
float HorizontalFov() const { return horizontalFov;}
/// Returns the vertical field-of-view used by this Frustum, in radians.
/** @note Calling this function when the Frustum is not set to use perspective projection will return values that are meaningless.
@see SetPerspective(), Type(), HorizontalFov(). */
float VerticalFov() const { return verticalFov;}
/// Returns the world-space width of this Frustum.
/** @note Calling this function when the Frustum is not set to use orthographic projection will return values that are meaningless.
@see SetOrthographic(), Type(), OrthographicHeight(). */
float OrthographicWidth() const { return orthographicWidth; }
/// Returns the world-space height of this Frustum.
/** @note Calling this function when the Frustum is not set to use orthographic projection will return values that are meaningless.
@see SetOrthographic(), Type(), OrthographicWidth(). */
float OrthograhpicHeight() const { return orthographicHeight; }
/// Returns the number of line segment edges that this Frustum is made up of, which is always 12.
/** This function is used in template-based algorithms to provide an unified API for iterating over the features of a Polyhedron. */
int NumEdges() const { return 12; }
/// Returns the aspect ratio of the view rectangle on the near plane.
/** The aspect ratio is the ratio of the width of the viewing rectangle to its height. This can also be computed by
the expression horizontalFov / verticalFov. To produce a proper non-stretched image when rendering, this
aspect ratio should match the aspect ratio of the actual render target (e.g. 4:3, 16:9 or 16:10 in full screen mode).
@see horizontalFov, verticalFov. */
float AspectRatio() const;
/// Makes this Frustum use a perspective projection formula with the given horizontal FOV parameter and aspect ratio.
/** Specifies the horizontal and vertical field-of-view values for this Frustum based on the given horizontal FOV
and the screen size aspect ratio.
@note Calling this function recomputes the cached projection matrix of this Frustum.
@see SetPerspective(), SetVerticalFovAndAspectRatio(). */
void SetHorizontalFovAndAspectRatio(float horizontalFov, float aspectRatio);
/// Makes this Frustum use a perspective projection formula with the given vertical FOV parameter and aspect ratio.
/** Specifies the horizontal and vertical field-of-view values for this Frustum based on the given vertical FOV
and the screen size aspect ratio.
@note Calling this function recomputes the cached projection matrix of this Frustum.
@see SetPerspective(), SetHorizontalFovAndAspectRatio(). */
void SetVerticalFovAndAspectRatio(float verticalFov, float aspectRatio);
Vector3 CornerPoint(int cornerIndex) const;
Vector3 NearPlanePos(float x, float y) const;
Vector3 FarPlanePos(float x, float y) const;
Vector3 WorldRight() const
{
if (handedness == FrustumHandedness::Right)
return Vector3::Cross(front, up);
else
return Vector3::Cross(up, front);
}
/// Computes the direction vector that points logically to the right-hand side of the Frustum.
/** This vector together with the member variables 'front' and 'up' form the orthonormal basis of the view frustum.
@see pos, front. */
Vector3 WorldRight() const;
Plane TopPlane() const;
Plane BottomPlane() const;
Plane RightPlane() const;
Plane TopPlane() const; ///< [similarOverload: LeftPlane] [hideIndex]
Plane BottomPlane() const; ///< [similarOverload: LeftPlane] [hideIndex]
Plane RightPlane() const; ///< [similarOverload: LeftPlane] [hideIndex]
/// Returns the plane equation of the specified side of this Frustum.
/** The normal vector of the returned plane points outwards from the volume inside the frustum.
This means the negative half-space of the Frustum is the space inside the Frustum.
[indexTitle: Left/Right/Top/BottomPlane]
@see NearPlane(), FarPlane(), GetPlane(), GetPlanes(). */
Plane LeftPlane() const;
/// Computes the plane equation of the far plane of this Frustum. [similarOverload: NearPlane]
/** The normal vector of the returned plane points outwards from the volume inside the frustum, i.e. away from the eye point.
(towards front). This means the negative half-space of the Frustum is the space inside the Frustum.
@see front, FarPlane(), LeftPlane(), RightPlane(), TopPlane(), BottomPlane(), GetPlane(), GetPlanes(). */
Plane FarPlane() const;
/// Computes the plane equation of the near plane of this Frustum.
/** The normal vector of the returned plane points outwards from the volume inside the frustum, i.e. towards the eye point
(towards -front). This means the negative half-space of the Frustum is the space inside the Frustum.
@see front, FarPlane(), LeftPlane(), RightPlane(), TopPlane(), BottomPlane(), GetPlane(), GetPlanes(). */
Plane NearPlane() const;
/// Computes the width of the near plane quad in world space units.
/** @see NearPlaneHeight(). */
float NearPlaneWidth() const;
/// Computes the height of the near plane quad in world space units.
/** @see NearPlaneHeight(). */
float NearPlaneHeight() const;
/// Moves this Frustum by the given offset vector.
/** @note This function operates in-place.
@param offset The world space offset to apply to the position of this Frustum.
@see Transform(). */
void Translate(const Vector3& offset);
/// Applies a transformation to this Frustum.
/** @param transform The transformation to apply to this Frustum. This transformation must be
* affine, and must contain an orthogoal set of column vectors (may not contain shear or projection).
* The transformation can only contain uniform
* @see Translate(), Scale(), classes Matrix3x3, Matrix4x4, Quaternion
*/
void Transform(const Matrix3x3& transform);
void Transform(const Matrix4x4& transform);
void Transform(const Quaternion& transform);
/// Converts this Frustum to a Polyhedron.
/** This function returns a Polyhedron representation of this Frustum. This conversion is exact, meaning that the returned
Polyhedron represents exactly the same set of points that this Frustum does.
@see MinimalEnclosingAABB(), MinimalEnclosingOBB(). */
Polyhedron ToPolyhedron() const;
/// Converts this Frustum to a PBVolume.
/** This function returns a plane-bounded volume representation of this Frustum. The conversion is exact, meaning that the
returned PBVolume<6> represents exactly the same set of points that this Frustum does.
@see ToPolyhedron(). */
//PBVolume<6> ToPBVolume() const;
/// Tests if the given object is fully contained inside this Frustum.
/** This function returns true if the given object lies inside this Frustum, and false otherwise.
@note The comparison is performed using less-or-equal, so the faces of this Frustum count as being inside, but
due to float inaccuracies, this cannot generally be relied upon.
@todo Add Contains(Circle/Disc/Sphere/Capsule).
@see Distance(), Intersects(), ClosestPoint(). */
bool Contains(const Vector3 &point) const;
bool Contains(const LineSegment &lineSegment) const;
bool Contains(const Triangle &triangle) const;
bool Contains(const Polygon &polygon) const;
bool Contains(const AABB &aabb) const;
bool Contains(const OBB &obb) const;
bool Contains(const Frustum &frustum) const;
bool Contains(const Polyhedron &polyhedron) const;
/// Computes the distance between this Frustum and the given object.
/** This function finds the nearest pair of points on this and the given object, and computes their distance.
If the two objects intersect, or one object is contained inside the other, the returned distance is zero.
@todo Add Frustum::Distance(Line/Ray/LineSegment/Plane/Triangle/Polygon/Circle/Disc/AABB/OBB/Capsule/Frustum/Polyhedron).
@see Contains(), Intersects(), ClosestPoint(). */
float Distance(const Vector3 &point) const;
/// Tests whether this Frustum and the given object intersect.
/** Both objects are treated as "solid", meaning that if one of the objects is fully contained inside
another, this function still returns true. (e.g. in case a line segment is contained inside this Frustum,
or this Frustum is contained inside a Sphere, etc.)
The first parameter of this function specifies the other object to test against.
@see Contains(), Distance(), ClosestPoint().
@todo Add Intersects(Circle/Disc). */
bool Intersects(const Ray& ray) const;
//bool Intersects(const Line& line) const;
bool Intersects(const LineSegment& lineSegment) const;
@@ -229,7 +374,13 @@ namespace J3ML::Geometry
bool Intersects(const Capsule& obb) const;
bool Intersects(const Frustum& plane) const;
bool Intersects(const Polyhedron& triangle) const;
/// Projects this Frustum onto the given 1D axis direction vector.
/** This function collapses this Frustum onto an 1D axis for the purposes of e.g. separate axis test computations.
The function returns a 1D range [outMin, outMax] denoting the interval of the projection.
@param direction The 1D axis to project to. This vector may be unnormalized, in which case the output
of this function gets scaled by the length of this vector.
@param outMin [out] Returns the minimum extent of this object along the projection axis.
@param outMax [out] Returns the maximum extent of this object along the projection axis. */
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
void GetCornerPoints(Vector3 *outPointArray) const;
@@ -240,4 +391,8 @@ namespace J3ML::Geometry
bool Intersects(const Line &line) const;
};
Frustum operator * (const Matrix3x3& transform, const Frustum& frustum);
Frustum operator * (const Matrix4x4& transform, const Frustum& frustum);
Frustum operator * (const Quaternion& transform, const Frustum& frustum);
}

View File

@@ -0,0 +1,12 @@
#pragma once
namespace J3ML::Geometry
{
/// A KD-tree accelleration structure for static geometry.
class KdTree
{
};
}

View File

@@ -1,5 +1,6 @@
#pragma once
#include "J3ML/LinearAlgebra/Vector3.h"
#include <J3ML/Geometry/Common.h>
#include <J3ML/LinearAlgebra.h>
#include <cfloat>
@@ -13,11 +14,18 @@ namespace J3ML::Geometry
Vector3 V1;
Vector3 V2;
public:
float DistanceSq(const Vector3 &point) const;
/// Returns a new triangle, translated with a direction vector
Triangle Translated(const Vector3& translation) const;
/// Returns a new triangle, scaled from 3D factors
Triangle Scaled(const Vector3& scaled) const;
bool Intersects(const AABB& aabb) const;
bool Intersects(const Capsule& capsule) const;
bool Intersects(const Triangle& rhs) const;
friend bool Intersects(const Triangle& lhs, const Triangle &rhs);
AABB BoundingAABB() const;
/// Tests if the given object is fully contained inside this triangle.
@@ -29,6 +37,8 @@ namespace J3ML::Geometry
bool Contains(const LineSegment& lineSeg, float triangleThickness = 1e-3f) const;
bool Contains(const Triangle& triangle, float triangleThickness = 1e-3f) const;
/// Project the triangle onto an axis, and returns the min and max value with the axis as a unit
Interval ProjectionInterval(const Vector3& axis) const;
void ProjectToAxis(const Vector3 &axis, float &dMin, float &dMax) const;
/// Quickly returns an arbitrary point inside this Triangle. Used in GJK intersection test.
@@ -108,6 +118,8 @@ namespace J3ML::Geometry
Plane PlaneCW() const;
Vector3 FaceNormal() const;
Vector3 Vertex(int i) const;
LineSegment Edge(int i) const;

View File

@@ -44,6 +44,8 @@ namespace J3ML::Math
bool EqualAbs(float a, float b, float epsilon = 1e-3f);
float RecipFast(float x);
// Coming soon: Units Namespace
// For Dimensional Analysis
/*

View File

@@ -11,10 +11,13 @@ namespace J3ML::LinearAlgebra
/// Transitional datatype, not useful for internal representation of rotation
/// But has uses for conversion and manipulation.
class AxisAngle {
public:
Vector3 axis;
float angle;
public:
AxisAngle();
explicit AxisAngle(const Quaternion& q);
explicit AxisAngle(const EulerAngle& e);
AxisAngle(const Vector3 &axis, float angle);

View File

@@ -19,8 +19,8 @@ public:
AxisAngle ToAxisAngle() const;
explicit EulerAngle(const Quaternion& orientation);
explicit EulerAngle(const AxisAngle& orientation);
explicit EulerAngle(const Quaternion& rhs);
explicit EulerAngle(const AxisAngle& rhs);
/// TODO: Implement separate upper and lower bounds
/// Preserves internal value of euler angles, normalizes and clamps the output.

View File

@@ -11,11 +11,10 @@
namespace J3ML::LinearAlgebra {
/// A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
/* This matrix can represent the most generic form of transformations for 3D objects,
* including perspective projections, which a 4-by-3 cannot store,
* and translations, which a 3-by-3 cannot represent.
* The elements of this matrix are
/// @brief A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
/// This matrix can represent the most generic form of transformations for 3D objects,
/// including perspective projections, which a 4-by-3 cannot store, and translations, which a 3-by-3 cannot represent.
/* The elements of this matrix are
* m_00, m_01, m_02, m_03
* m_10, m_11, m_12, m_13
* m_20, m_21, m_22, m_23,
@@ -227,9 +226,19 @@ namespace J3ML::LinearAlgebra {
static Matrix4x4 D3DPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
/// Computes a left-handled orthographic projection matrix for OpenGL.
/// @note Use the M*v multiplication order to project points with this matrix.
static Matrix4x4 OpenGLOrthoProjLH(float n, float f, float h, float v);
/// Computes a right-handled orthographic projection matrix for OpenGL.
/// @note Use the M*v multiplication order to project points with this matrix.
static Matrix4x4 OpenGLOrthoProjRH(float n, float f, float h, float v);
/// Computes a left-handed perspective projection matrix for OpenGL.
/// @note Use the M*v multiplication order to project points with this matrix.
static Matrix4x4 OpenGLPerspProjLH(float n, float f, float h, float v);
/// Identical to http://www.opengl.org/sdk/docs/man/xhtml/gluPerspective.xml , except uses viewport sizes instead of FOV to set up the
/// projection matrix.
/// @note Use the M*v multiplication order to project points with this matrix.
static Matrix4x4 OpenGLPerspProjRH(float n, float f, float h, float v);
Vector4 operator[](int row);

View File

@@ -38,10 +38,13 @@ namespace J3ML::LinearAlgebra
//void Inverse();
explicit Quaternion(Vector4 vector4);
explicit Quaternion(const EulerAngle& angle);
explicit Quaternion(const AxisAngle& angle);
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
void SetFrom(const AxisAngle& angle);
Quaternion Inverse() const;
@@ -58,6 +61,8 @@ namespace J3ML::LinearAlgebra
float GetAngle() const;
EulerAngle ToEulerAngle() const;
Matrix3x3 ToMatrix3x3() const;

View File

@@ -8,11 +8,9 @@
namespace J3ML::LinearAlgebra {
// A 3D (x, y, z) ordered pair.
/// A 3D (x, y, z) ordered pair.
class Vector3 {
public:
float x = 0;
float y = 0;
float z = 0;

View File

@@ -197,12 +197,12 @@ namespace J3ML::Geometry {
return aabb;
}
float AABB::GetVolume() const {
float AABB::Volume() const {
Vector3 sz = Size();
return sz.x * sz.y * sz.z;
}
float AABB::GetSurfaceArea() const {
float AABB::SurfaceArea() const {
Vector3 size = Size();
return 2.f * (size.x*size.y + size.x*size.z + size.y*size.z);
}
@@ -454,6 +454,51 @@ namespace J3ML::Geometry {
#endif
}
bool AABB::Intersects(const AABB& aabb) const {
return Intersection(aabb).has_value();
}
std::optional<AABB> AABB::Intersection(const AABB& rhs) const {
// Here we do SAT, except that due to both objects being AABBs, they are "already projected" onto the same axis
constexpr auto test = [](float a, float b, float c, float d) -> std::optional<Vector2> {
// Overlap Test
// Points go:
// +-------------+
// +-----|-----+ |
// | 1 | | 2 |
// | +-----|-------+
// +-----------+
//
// A-----C-----B-------D
//
// IF A < C AND B > C ( Overlap in order object 1 -> object 2)
// IF C < A AND D > A ( Overlap in order object 2 -> object 1)
if (a < c && b > c) {
return Vector2{c, b};
}
if (c < a && d > a) {
return Vector2{a, d};
}
return std::nullopt;
};
// This is SAT, so we need all axes to collide
std::optional<Vector2> xCollision = test(MinX(), MaxX(), rhs.MinX(), rhs.MaxX());
if (!xCollision.has_value()) return std::nullopt;
std::optional<Vector2> yCollision = test(MinY(), MaxY(), rhs.MinY(), rhs.MaxY());
if (!yCollision.has_value()) return std::nullopt;
std::optional<Vector2> zCollision = test(MinZ(), MaxZ(), rhs.MinZ(), rhs.MaxZ());
if (!zCollision.has_value()) return std::nullopt;
// At this point all 3 optionals have a value ; x of each is the "min" value, y of each is the "max" value
return AABB{
Vector3{xCollision->x, yCollision->x, zCollision->x},
Vector3{xCollision->y, yCollision->y, zCollision->y}
};
}
bool AABB::IntersectLineAABB_CPP(const Vector3 &linePos, const Vector3 &lineDir, float &tNear, float &tFar) const
{
assert(lineDir.IsNormalized());
@@ -552,6 +597,22 @@ namespace J3ML::Geometry {
return AABB(minPoint+offset, maxPoint+offset);
}
void AABB::Scale(const Vector3 &scale) {
minPoint.x *= scale.x;
minPoint.y *= scale.y;
minPoint.z *= scale.z;
maxPoint.x *= scale.x;
maxPoint.y *= scale.y;
maxPoint.z *= scale.z;
}
AABB AABB::Scaled(const Vector3 &scale) const {
return AABB(
Vector3(minPoint.x*scale.y, minPoint.y*scale.y, minPoint.z*scale.z),
Vector3(maxPoint.x*scale.y, maxPoint.y*scale.y, maxPoint.z*scale.z)
);
}
AABB AABB::TransformAABB(const Matrix3x3 &transform) {
// TODO: assert(transform.IsColOrthogonal());
// TODO: assert(transform.HasUniformScale());

View File

@@ -0,0 +1,10 @@
#include <J3ML/Geometry/Common.h>
namespace J3ML::Geometry {
bool Interval::Intersects(const Interval& rhs) const {
return *this == rhs || this->min > rhs.max != this->max >= rhs.min;
}
}

View File

@@ -293,4 +293,25 @@ namespace J3ML::Geometry
{
return this->ToPolyhedron().Intersects(polyhedron);
}
Frustum::Frustum()
: type(FrustumType::Invalid),
pos(Vector3::NaN),
front(Vector3::NaN),
up(Vector3::NaN),
nearPlaneDistance(NAN),
farPlaneDistance(NAN),
worldMatrix(Matrix4x4::NaN),
viewProjectionMatrix(Matrix4x4::NaN)
{
// For conveniency, allow automatic initialization of the graphics API and handedness in use.
// If neither of the #defines are set, user must specify per-instance.
}
Vector3 Frustum::WorldRight() const {
if (handedness == FrustumHandedness::Right)
return Vector3::Cross(front, up);
else
return Vector3::Cross(up, front);
}
}

View File

@@ -5,9 +5,42 @@
#include <J3ML/Geometry/Line.h>
#include <J3ML/Geometry/Capsule.h>
namespace J3ML::Geometry
{
Interval Triangle::ProjectionInterval(const Vector3& axis) const {
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/generic_sat.html
float min = axis.Dot(V0);
float max = min;
float value = axis.Dot(V1);
if (value < min)
min = value;
if (value > max)
max = value;
value = axis.Dot(V2);
if (value < min)
min = value;
if (value > max)
max = value;
return Interval{min, max};
}
Triangle Triangle::Translated(const Vector3& translation) const {
return {
V0 + translation,
V1 + translation,
V2 + translation
};
}
Triangle Triangle::Scaled(const Vector3& scale) const {
return {
{V0.x * scale.x, V0.y * scale.y, V0.z * scale.y},
{V1.x * scale.x, V1.y * scale.y, V1.z * scale.y},
{V2.x * scale.x, V2.y * scale.y, V2.z * scale.y},
};
}
LineSegment Triangle::Edge(int i) const
{
@@ -37,6 +70,13 @@ namespace J3ML::Geometry
return Vector3::NaN;
}
Vector3 Triangle::FaceNormal() const {
Vector3 edge1 = V1 - V0;
Vector3 edge2 = V2 - V1;
return edge1.Cross(edge2);
}
Plane Triangle::PlaneCCW() const
{
return Plane(V0, V1, V2);
@@ -351,6 +391,78 @@ namespace J3ML::Geometry
return capsule.Intersects(*this);
}
namespace {
bool HaveSeparatingAxis(const Triangle& t1, const Triangle& t2, const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d) {
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/robust_sat.html
Vector3 ab = (a - b);
Vector3 axis = ab.Cross(c - d);
if (axis.IsZero()) {
// Axis is zero, they are parallel, try to find the vector orthogonal to both
Vector3 n = ab.Cross(c - a);
if (n.IsZero()) {
// AB and AC are parallel, this means they are both on the same axis, just pick one
axis = ab;
} else {
// Parallel but not on the same axis, get the vector that is normal to both edges
axis = ab.Cross(n);
}
}
return !t1.ProjectionInterval(axis).Intersects(t2.ProjectionInterval(axis));
}
}
bool Intersects(const Triangle& lhs, const Triangle& rhs) {
// Triangle v Triangle intersection check using SAT
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/generic_sat.html
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/triangle-triangle.html
// Reminder, we only need to find *one* axis to disprove that they collide, the corrolary is that we need to check ALL axes to prove that they collide
Vector3 lEdges[3] = {
lhs.V1 - lhs.V0,
lhs.V2 - lhs.V1,
lhs.V0 - lhs.V2,
};
// First, use lhs's face normal as the separating axis
if (HaveSeparatingAxis(lhs, rhs, lhs.V1, lhs.V0, lhs.V2, lhs.V1)) {
return false;
}
Vector3 rEdges[3] = {
rhs.V1 - rhs.V0,
rhs.V2 - rhs.V1,
rhs.V0 - rhs.V2,
};
// Second, use rhs's face normal as the separating axis
if (HaveSeparatingAxis(lhs, rhs, rhs.V1, rhs.V0, rhs.V2, rhs.V1)) {
return false;
}
// Third, check the normals of each edge against each other
if (HaveSeparatingAxis(lhs, rhs, lhs.V1, lhs.V0, rhs.V1, rhs.V0) ||
HaveSeparatingAxis(lhs, rhs, lhs.V1, lhs.V0, rhs.V2, rhs.V1) ||
HaveSeparatingAxis(lhs, rhs, lhs.V1, lhs.V0, rhs.V0, rhs.V2) ||
HaveSeparatingAxis(lhs, rhs, lhs.V2, lhs.V1, rhs.V1, rhs.V0) ||
HaveSeparatingAxis(lhs, rhs, lhs.V2, lhs.V1, rhs.V2, rhs.V1) ||
HaveSeparatingAxis(lhs, rhs, lhs.V2, lhs.V1, rhs.V0, rhs.V2) ||
HaveSeparatingAxis(lhs, rhs, lhs.V0, lhs.V2, rhs.V1, rhs.V0) ||
HaveSeparatingAxis(lhs, rhs, lhs.V0, lhs.V2, rhs.V2, rhs.V1) ||
HaveSeparatingAxis(lhs, rhs, lhs.V0, lhs.V2, rhs.V0, rhs.V2)) {
return false;
}
// No axis is separating, we can safely conclude they intersect
return true;
}
bool Triangle::Intersects(const Triangle& rhs) const {
return Geometry::Intersects(*this, rhs);
}
Vector3 Triangle::ExtremePoint(const Vector3 &direction) const {
Vector3 mostExtreme = Vector3::NaN;
float mostExtremeDist = -FLT_MAX;

View File

@@ -14,4 +14,48 @@ namespace J3ML::LinearAlgebra {
std::cos(angle/2)
};
}
AxisAngle::AxisAngle(const Quaternion &q) {
auto theta = std::acos(q.w) * 2.f;
auto ax = q.x / std::sin(std::acos(theta));
auto ay = q.y / std::sin(std::acos(theta));
auto az = q.z / std::sin(std::acos(theta));
}
AxisAngle::AxisAngle(const EulerAngle &e) {
// Assuming the angles are in radians
float heading = e.pitch;
float attitude = e.yaw;
float bank = e.roll;
float c1 = std::cos(heading / 2.f);
float s1 = std::sin(heading / 2.f);
float c2 = std::cos(attitude / 2.f);
float s2 = std::sin(attitude / 2.f);
float c3 = std::cos(bank / 2.f);
float s3 = std::sin(bank / 2.f);
float w = c1*c2*c3 - s1*s2*s3;
float x = c1*c2*c3 + s1*s2*s3;
float y = s1*c2*c3 + c1*s2*s3;
float z = c1*s2*c3 - s1*c2*s3;
angle = 2.f * std::acos(w);
double norm = x*x + y*y + z*z;
if (norm < 0.001) { // when all euler angles are zero angle=0, so
// we can set axis to anything to avoid divide by zero
x = 1;
y = z = 0;
} else {
norm = std::sqrt(norm);
x /= norm;
y /= norm;
z /= norm;
}
axis = {x, y, z};
}
}

View File

@@ -48,4 +48,64 @@ namespace J3ML::LinearAlgebra {
}
EulerAngle::EulerAngle() : pitch(0), yaw(0), roll(0) {}
EulerAngle::EulerAngle(const AxisAngle &rhs) {
float x = rhs.axis.x;
float y = rhs.axis.y;
float z = rhs.axis.z;
float angle = rhs.angle;
double s = std::sin(rhs.angle);
double c = std::cos(rhs.angle);
double t = 1-c;
// if axis is not already normalized then uncomment this
// double magnitude = std::sqrt(x*x + y*y + z*z);
// if (magnitude == 0) throw error;
// x /= magnitude;
// y /= magnitude;
// z /= magnitude;
if ((x*y*t + z*s) > 0.998) { // North pole singularity detected
pitch = 2 * std::atan2(x * std::sin(angle/2.f), std::cos(angle/2.f));
yaw = M_PI / 2.f;
roll = 0;
return;
}
if ((x*y*t + z*s) < -0.998) { // South pole singularity detected
pitch = -2 * std::atan2(x * std::sin(angle/2.f), std::cos(angle/2.f));
yaw = -M_PI / 2.f;
roll = 0;
return;
}
pitch = std::atan2(y * s-x * z * t, 1 - (y*y + z*z) * t);
yaw = std::asin(x * y * t + z * s);
roll = std::atan2(x * s - y * z * t, 1 - (x*x + z*z) * t);
}
EulerAngle::EulerAngle(const Quaternion &rhs) {
double test = rhs.x * rhs.y + rhs.z * rhs.w;
if (test > 0.499) { // Singularity at north pole
pitch = 2 * std::atan2(rhs.x, rhs.w);
yaw = M_PI / 2.f;
roll = 0;
return;
}
if (test < -0.499) { // Singularity at south pole
pitch = -2 * std::atan2(rhs.x, rhs.y);
yaw = - M_PI / 2.f;
roll = 0;
return;
}
float sqx = rhs.x * rhs.x;
float sqy = rhs.y * rhs.y;
float sqz = rhs.z * rhs.z;
}
}

View File

@@ -201,4 +201,39 @@ namespace J3ML::LinearAlgebra {
Quaternion::Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion::Quaternion(const AxisAngle &angle) {
double s = std::sin(angle.angle / 2);
x = angle.axis.x * s;
y = angle.axis.y * s;
z = angle.axis.z * s;
w = std::cos(angle.angle / 2);
}
Quaternion::Quaternion(const EulerAngle &angle) {
// Abbreviations for the various angular functions
double cr = std::cos(angle.roll * 0.5);
double sr = std::sin(angle.roll * 0.5);
double cp = std::cos(angle.pitch * 0.5);
double sp = std::sin(angle.pitch * 0.5);
double cy = std::cos(angle.yaw * 0.5);
double sy = std::sin(angle.yaw * 0.5);
w = cr * cp * cy + sr * sp * sy;
x = sr * cp * cy - cr * sp * sy;
y = cr * sp * cy + sr * cp * sy;
z = cr * cp * sy - sr * sp * cy;
}
void Quaternion::SetFrom(const AxisAngle &angle) {
double s = std::sin(angle.angle / 2);
x = angle.axis.x * s;
y = angle.axis.y * s;
z = angle.axis.z * s;
w = std::cos(angle.angle / 2);
}
EulerAngle Quaternion::ToEulerAngle() const {
return EulerAngle(*this);
}
}

View File

@@ -86,10 +86,7 @@ namespace J3ML::LinearAlgebra {
float Vector2::Dot(const Vector2& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x + a.y * b.y;
return this->x * rhs.x + this->y * rhs.y;
}
Vector2 Vector2::Project(const Vector2& rhs) const

View File

@@ -154,11 +154,9 @@ namespace J3ML::LinearAlgebra {
float Vector3::Dot(const Vector3& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x +
a.y * b.y +
a.z * b.z;
return x * rhs.x +
y * rhs.y +
z * rhs.z;
}
Vector3 Vector3::Project(const Vector3& rhs) const

View File

@@ -0,0 +1,51 @@
#include <gtest/gtest.h>
#include <J3ML/Geometry/Common.h>
using J3ML::Geometry::Interval;
TEST(CommonGeometry, Interval_Intersect) {
// <- a ->
// <- b ->
EXPECT_EQ((Interval{0, 1}.Intersects({2, 3})), false);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 3}.Intersects({0, 1})), false);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 4}.Intersects({3, 5})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 4}.Intersects({1, 3})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 3}.Intersects({3, 5})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{3, 5}.Intersects({2, 3})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 3}.Intersects({2, 5})), true);\
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 3}.Intersects({2, 3})), true);
// . a
// . b
EXPECT_EQ((Interval{2, 2}.Intersects({2, 2})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{2, 5}.Intersects({3, 4})), true);
// <- a ->
// <- b ->
EXPECT_EQ((Interval{3, 4}.Intersects({2, 5})), true);
}

View File

@@ -0,0 +1,89 @@
#include <gtest/gtest.h>
#include <J3ML/Geometry/Triangle.h>
using J3ML::Geometry::Interval;
using J3ML::Geometry::Triangle;
TEST(TriangleTests, FaceNormal)
{
Triangle t{
Vector3{-1, -1, -1},
Vector3{0, 1, 0},
Vector3{1, -1, 1}
};
EXPECT_EQ(t.FaceNormal(), (Vector3{4, 0, -4}));
}
TEST(TriangleTests, IntersectTriangle)
{
Triangle xyTriangle{
{0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 0.0f},
{2.0f, 0.0f, 0.0f}
};
// Triangle collides with itself
EXPECT_EQ(Intersects(xyTriangle, xyTriangle), true);
// Translate 1 towards x -- should collide
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(1.0f, 0.0f, 0.0f))), true);
// Translate 2 towards x -- should collide exactly on V1
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(2.0f, 0.0f, 0.0f))), true);
// Translate 2 towards negative x -- should collide exactly on V0
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(-2.0f, 0.0f, 0.0f))), true);
// Translate 3 towards x -- should not collide
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(3.0f, 0.0f, 0.0f))), false);
// Translate 3 towards negative x -- should not collide
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(-3.0f, 0.0f, 0.0f))), false);
// Translate 1 towards z -- should not collide
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Translated(Vector3(0.0f, 0.0f, 1.0f))), false);
// Triangle collides with contained smaller triangle
EXPECT_EQ(Intersects(xyTriangle, xyTriangle.Scaled(Vector3(0.5f, 0.5f, 0.5f)).Translated(Vector3(0.25f, 0.25f, 0.0f))), true);
Triangle zxTriangle {
{0.0f, 0.0f, 0.0f},
{1.0f, 0.0f, 1.0f},
{0.0f, 0.0f, 2.0f}
};
// Should collide exactly on V0
EXPECT_EQ(Intersects(xyTriangle, zxTriangle), true);
// Should collide across xyTriangle's edge and zxTriangle's face
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(0.0f, 0.0f, -1.0))), true);
// Should collide exactly on V1
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(0.0f, 0.0f, -2.0))), true);
// xyTriangle's face should be poked by zxTriangle's V0
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(1.0f, 1.0f, 0.0f))), true);
// xyTriangle's face should be cut by zxTriangle
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(1.0f, 1.0f, -0.5f))), true);
// Should not collide
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(1.0f, 1.0f, 1.0f))), false);
// Should not collide
EXPECT_EQ(Intersects(xyTriangle, zxTriangle.Translated(Vector3(0.0f, 0.0f, -3.0f))), false);
Triangle yxTriangle{
{0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 0.0f},
{0.0f, 2.0f, 0.0f}
};
// Should collide on V0-V1 edge
EXPECT_EQ(Intersects(yxTriangle, yxTriangle), true);
// Should not collide
EXPECT_EQ(Intersects(xyTriangle, yxTriangle.Translated(Vector3(0.0f, 1.0f, 0.0f))), false);
// Should not collide
EXPECT_EQ(Intersects(yxTriangle, yxTriangle.Translated(Vector3(0.0f, 0.0f, 1.0f))), false);
Triangle zyInvertedTriangle{
{0.0f, 1.0f, -1.0f},
{0.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 1.0f}
};
// Should collide exactly on V1
EXPECT_EQ(Intersects(xyTriangle, zyInvertedTriangle), true);
// Should not collide
EXPECT_EQ(Intersects(xyTriangle, zyInvertedTriangle.Translated(Vector3(0.0f, 1.0f, 0.0f))), false);
// Should not collide
EXPECT_EQ(Intersects(xyTriangle, zyInvertedTriangle.Translated(Vector3(0.25f, 0.75f, 0.0f))), false);
}

View File

@@ -139,15 +139,15 @@ TEST(Vector2Test, V2_DotProduct)
// TODO: Equality
Vector2 A {2, 2};
Vector2 B {1, 1};
EXPECT_FLOAT_EQ(A.Dot(B), 1.f);
EXPECT_FLOAT_EQ(A.Dot(B), 4.f);
}
TEST(Vector2Test, V2_Project)
{
Vector2 Base {1, 1};
Vector2 Projected {1, 1};
Vector2 Base {4, 4};
Vector2 Projected {1, 0};
Vector2 ExpectedResult {0.5, 0.5};
Vector2 ExpectedResult {4, 0};
EXPECT_EQ(Base.Project(Projected), ExpectedResult);
}

View File

@@ -152,7 +152,7 @@ TEST(Vector3Test, V3_DotProduct) {
Vector3 B{1,1,1};
float ExpectedResult = 1;
float ExpectedResult = 18;
EXPECT_FLOAT_EQ(A.Dot(B), ExpectedResult);
}