j3ml autodoc test
Some checks failed
Gitea Actions Demo / Explore-Gitea-Actions (push) Failing after 26s

This commit is contained in:
maxbyte9p
2024-04-09 16:53:24 -04:00
parent 01948c79ad
commit 57e4ebc8db
87 changed files with 14500 additions and 1 deletions

View File

@@ -23,3 +23,6 @@ jobs:
- run: echo "${{ secrets.SSHKEY }}" > /id_rsa
- run: chmod 600 /id_rsa
- run: ssh -o "IdentitiesOnly=yes" -o "StrictHostKeyChecking=no" -i /id_rsa ${{ secrets.SSHUSER }}@${{ secrets.SSHIP }} -p ${{ secrets.SSHPORT }} 'touch cock'
- run: apt-get install doxygen
- run: doxygen
- run: scp -r -o "IdentitiesOnly=yes" -o "StrictHostKeyChecking=no" -i /id_rsa -P ${{ secrets.SSHPORT }} ${{ secrets.SSHUSER }}@${{ secrets.SSHIP }}:/home/${{ secrets.SSHUSER }}/j3mldoc

43
CMakeLists.txt Normal file
View File

@@ -0,0 +1,43 @@
cmake_minimum_required(VERSION 3.18)
PROJECT(J3ML
VERSION 1.1
LANGUAGES CXX
)
if (PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
message(FATAL_ERROR "In-source builds are not allowed")
endif()
set(CMAKE_CXX_STANDARD 20)
#set(CMAKE_POSITION_INDEPENDENT_CODE ON)
if (WIN32)
set(CMAKE_CXX_FLAGS "-municode")
endif(WIN32)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
# Enable Package Managers
include(cmake/CPM.cmake)
#include(cmake/gtest.cmake)
include(CTest)
file(GLOB_RECURSE J3ML_HEADERS "include/J3ML/*.h" "include/J3ML/*.hpp")
file(GLOB_RECURSE J3ML_SRC "src/J3ML/*.c" "src/J3ML/*.cpp")
include_directories("include")
add_library(J3ML SHARED ${J3ML_SRC}
include/J3ML/Geometry/Common.h
src/J3ML/Geometry/Triangle.cpp)
set_target_properties(J3ML PROPERTIES LINKER_LANGUAGE CXX)
install(TARGETS ${PROJECT_NAME} DESTINATION lib/${PROJECT_NAME})
install(FILES ${J3ML_HEADERS} DESTINATION include/${PROJECT_NAME})
add_subdirectory(tests)
add_executable(MathDemo main.cpp)
target_link_libraries(MathDemo ${PROJECT_NAME})

2782
Doxyfile Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1 +1,17 @@
lol
# Josh's 3D Math Library - J3ML
Yet Another C++ Math Standard
## Motivation
This project was sparked by a desire to gain a deeper understanding into the math underlying computer graphics. While packages such as glm, eigen, etc. are amazing libraries, it removes the fun of having to learn it the hard way.
## Use Cases
## Features
### LinearAlgebra
#### Vectors
#### Matrices
#### Conversion Types
### Geometry
## Samples
## Bugs / Issues
## Compilation

24
cmake/CPM.cmake Normal file
View File

@@ -0,0 +1,24 @@
# SPDX-License-Identifier: MIT
#
# SPDX-FileCopyrightText: Copyright (c) 2019-2023 Lars Melchior and contributors
set(CPM_DOWNLOAD_VERSION 0.38.7)
set(CPM_HASH_SUM "83e5eb71b2bbb8b1f2ad38f1950287a057624e385c238f6087f94cdfc44af9c5")
if(CPM_SOURCE_CACHE)
set(CPM_DOWNLOAD_LOCATION "${CPM_SOURCE_CACHE}/cpm/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
elseif(DEFINED ENV{CPM_SOURCE_CACHE})
set(CPM_DOWNLOAD_LOCATION "$ENV{CPM_SOURCE_CACHE}/cpm/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
else()
set(CPM_DOWNLOAD_LOCATION "${CMAKE_BINARY_DIR}/cmake/CPM_${CPM_DOWNLOAD_VERSION}.cmake")
endif()
# Expand relative path. This is important if the provided path contains a tilde (~)
get_filename_component(CPM_DOWNLOAD_LOCATION ${CPM_DOWNLOAD_LOCATION} ABSOLUTE)
file(DOWNLOAD
https://github.com/cpm-cmake/CPM.cmake/releases/download/v${CPM_DOWNLOAD_VERSION}/CPM.cmake
${CPM_DOWNLOAD_LOCATION} EXPECTED_HASH SHA256=${CPM_HASH_SUM}
)
include(${CPM_DOWNLOAD_LOCATION})

68
cmake/gtest.cmake Normal file
View File

@@ -0,0 +1,68 @@
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
#-----------------------------------------------------------------------
# CPM configuration
#-----------------------------------------------------------------------
set(CPM_MODULE_NAME google_test)
set(CPM_LIB_TARGET_NAME ${CPM_MODULE_NAME})
if ((DEFINED CPM_DIR) AND (DEFINED CPM_UNIQUE_ID) AND (DEFINED CPM_TARGET_NAME))
set(CPM_LIB_TARGET_NAME ${CPM_TARGET_NAME})
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CPM_DIR})
include(CPM)
else()
set(CPM_DIR "${CMAKE_CURRENT_BINARY_DIR}/cpm-packages" CACHE TYPE STRING)
find_package(Git)
if(NOT GIT_FOUND)
message(FATAL_ERROR "CPM requires Git.")
endif()
if (NOT EXISTS ${CPM_DIR}/CPM.cmake)
execute_process(
COMMAND "${GIT_EXECUTABLE}" clone https://github.com/iauns/cpm ${CPM_DIR}
RESULT_VARIABLE error_code
OUTPUT_VARIABLE head_sha)
if(error_code)
message(FATAL_ERROR "CPM failed to get the hash for HEAD")
endif()
endif()
include(${CPM_DIR}/CPM.cmake)
endif()
# All externals *must* define this.
CPM_ForceOnlyOneModuleVersion()
CPM_InitModule(${CPM_MODULE_NAME})
#------------------------------------------------------------------------------
# Google Test
#------------------------------------------------------------------------------
# Google test as an external project is a bad idea! You really should add it
# as a subdirectory so that it can capture your compiler flags
set(GOOGLE_TEST_DIR ${CMAKE_CURRENT_SOURCE_DIR}/3rdParty/gtest)
CPM_EnsureRepoIsCurrent(
TARGET_DIR ${GOOGLE_TEST_DIR}
SVN_REPOSITORY "http://googletest.googlecode.com/svn/trunk"
SVN_REVISION "664"
USE_CACHING TRUE
)
# Compiler flags for MSVC 2010
if (MSVC_VERSION EQUAL 1600)
add_definitions(-DGTEST_USE_OWN_TR1_TUPLE=0)
CPM_ExportAdditionalDefinition("-DGTEST_USE_OWN_TR1_TUPLE=0")
endif()
# Compiler flags for MSVC 2012
if(MSVC_VERSION EQUAL 1700)
add_definitions(-D_VARIADIC_MAX=10)
endif()
# For All versions of gtest, we force shared CRT.
set(gtest_force_shared_crt ON)
set(gtest_force_shared_crt ON)
# Add gtest now that we have the appropriate flags set.
add_subdirectory(${GOOGLE_TEST_DIR})
CPM_ExportAdditionalIncludeDir("${GOOGLE_TEST_DIR}/include")
CPM_ExportAdditionalLibraryTarget("gtest")

View File

@@ -0,0 +1,42 @@
//
// Created by dawsh on 2/8/24.
//
namespace J3ML::Algorithm
{
/// Implementations for a variety of Differential Equation Solving algorithms
namespace Solvers
{
// Consider a differential equation
// dy/dx = (x + y + xy)
float eq(float x, float y)
{
return (x + y + x*y);
}
// Accelleration = Velocity / Time
// Velocity = Position / Time
// Position = Vector3
//
float euler(float x0, float y, float h, float x)
{
float temp = -0.f;
// Iterating till the point at which we need approximation
while (x0 < x) {
temp = y;
y = y + h * eq(x0, y);
x0 = x0 + h;
}
return y;
}
class EulerMethodSolver {};
class SemiImplicitEulerMethodSolver {};
class GaussSeidelMethodSolver {};
class GradientDescentSolver {};
class VerletIntegrationSolver {};
}
}

View File

@@ -0,0 +1,60 @@
// @file GJK.h
/// Implementation of the Gilbert-Johnson-Keerthi (GJK) convex polyhedron intersection test
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry.h>
#pragma once
namespace J3ML::Algorithms
{
Vector3 UpdateSimplex(Vector3 *s, int &n);
#define SUPPORT(dir, minS, maxS) (a.ExtremePoint(dir, maxS) - b.ExtremePoint(-dir, minS));
template <typename A, typename B>
bool GJKIntersect(const A &a, const B &b)
{
Vector3 support[4];
// Start with an arbitrary point in the Minkowski set shape.
support[0] = a.AnyPointFast() - b.AnyPointFast();
if (support[0].LengthSquared() < 1e-7f) // Robustness check: Test if the first arbitrary point we guessed produced the zero vector we are looking for!
return true;
Vector3 d = -support[0]; // First search direction is straight toward the origin from the found point.
int n = 1; // Stores the current number of points in the search simplex.
int nIterations = 50; // Robustness check: Limit the maximum number of iterations to perform to avoid infinite loop if types A or B are buggy!
while (nIterations-- > 0)
{
// Compute the extreme point to the direction d in the Minkowski set shape.
float maxS, minS;
Vector3 newSupport = SUPPORT(d, minS, maxS);
// If the most extreme point in that search direction did not walk past the origin, then the origin cannot be contained in the Minkowski
// convex shape, and the two convex objects a and b do not share a common point - no intersection!
if (minS + maxS < 0.f)
return false;
// Add the newly evaluated point to the search simplex
assert(n < 4);
support[n++] = newSupport;
// Examine the current simplex, prune a redundant part of it, and produce the next search direction.
d = UpdateSimplex(support, n);
if (n == 0) // Was the origin contained in the current simplex? If so, then the convex shapes a and b do share a common point - intersection!
return true;
}
return false;
}
// This computes GJL intersection, but by first translating both objects to a coordinate frame that is as closely
// centered around world origin as possible, to gain floating point precision.
template <typename A, typename B>
bool FloatingPointOffsetedGJKIntersect(const A &a, const B &b)
{
AABB ab = a.MinimalEnclosingAABB();
AABB bb = b.MinimalEnclosingAABB();
Vector3 offset = (Vector3::Min(ab.minPoint, bb.minPoint) + Vector3::Max(ab.maxPoint, bb.maxPoint)) * 0.5f;
const Vector3 floatingPtPrecisionOffset = -offset;
return GJLIntersect(a.Translated(floatingPtPrecisionOffset), b.Translated(floatingPtPrecisionOffset));
}
}

View File

@@ -0,0 +1,99 @@
#pragma once
#include "J3ML/J3ML.h"
namespace J3ML::Algorithm
{
/** @brief A linear congruential random number generator.
Uses D.H. Lehmer's Linear Congruential Method (1949) for generating random numbers.
Supports both Multiplicative Congruential Method (increment==0) and
Mixed Congruential Method (increment!=0)
It is perhaps the simplest and fastest method to generate pseudo-random numbers on
a computer. Per default uses the values for Minimal Standard LCG.
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.math.rutgers.edu/~greenfie/currentcourses/sem090/pdfstuff/jp.pdf
Pros:
<ul>
<li> Easy to implement.
<li> Fast.
</ul>
Cons:
<ul>
<li> NOT safe for cryptography because of the easily calculatable sequential
correlation between successive calls. A case study:
http://www.cigital.com/papers/download/developer_gambling.php
<li> Tends to have less random low-order bits (compared to the high-order bits)
Thus, NEVER do something like this:
u32 numBetween1And10 = 1 + LCGRand.Int() % 10;
Instead, take into account EVERY bit of the generated number, like this:
u32 numBetween1And10 = 1 + (int)(10.0 * (double)LCGRand.Int()
/(LCGRand.Max()+1.0));
or simply
u32 numBetween1And10 = LCGRand.Float(1.f, 10.f);
</ul> */
class RNG {
public:
/// Initializes the generator from the current system clock.
RNG();
RNG(u32 seed, u32 multiplier = 69621,
u32 increment = 0, u32 modulus = 0x7FFFFFFF) // 2^31 - 1
{
Seed(seed, multiplier, increment, modulus);
}
/// Reinitializes the generator to the new settings.
void Seed(u32 seed, u32 multiplier, u32 increment, u32 modulus = 0x7FFFFFFF);
/// Returns a random integer picked uniformly in the range [0, MaxInt()]
u32 Int();
/// Returns the biggest number the generator can yield. [modulus - 1]
u32 MaxInt() const { return modulus - 1;}
/// Returns a random integer picked uniformly in the range [0, 2^32-1].
/// @note The configurable modulus and increment are not used by this function, but are always increment == 0, modulus=2^32
u32 IntFast();
/// Returns a random integer picked uniformly in the range [a, b]
/// @param a Lower bound, inclusive.
/// @param b Upper bound, inclusive.
/// @return A random integer picked uniformly in the range [a, b]
int Int(int a, int b);
/// Returns a random float picked uniformly in the range [0, 1].
float Float();
/// Returns a random float picked uniformly in the range [0, 1].
/// @note this is much slower than Float()! Prefer that function if possible.
float Float01Incl();
/// Returns a random float picked uniformly in the range ]-1, 1[.
/// @note This function has one more bit of randomness compared to Float(), but has a theoretical bias
/// towards 0.0, since floating point has two representations for 0 (+0, and -0).
float FloatNeg1_1();
/// Returns a random float picked uniformly in the range [a, b[.
/// @param a Lower bound, inclusive.
/// @param b Upper bound, exclusive.
/// @return A random float picked uniformly in the range [a, b[
/// @note This function is slower than RNG::FloatIncl(). If you don't care about the open/closed interval, prefer that function.
float Float(float a, float b);
/// Returns a random float picked uniformly in the range [a, b].
/// @param a Lower bound, inclusive.
/// @param b Upper bound, inclusive.
/// @return A random float picked uniformly in the range [a, b]
float FloatIncl(float a, float b);
u32 multiplier;
u32 increment;
u32 modulus;
u32 lastNumber;
};
}

View File

@@ -0,0 +1,21 @@
//
// Created by dawsh on 2/8/24.
//
namespace J3ML::Algorithm
{
// Numerical model of a "Spring" object
// Simulates any oscillating system i.e. a mass suspended from a spring.
class Spring
{
float Dampening;
float Stiffness;
float Goal;
float RestLength = 1.f;
bool Overdamped() const;
bool Undamped() const;
bool Underdamped() const;
bool CriticallyDamped() const;
};
}

23
include/J3ML/Geometry.h Normal file
View File

@@ -0,0 +1,23 @@
#include <J3ML/LinearAlgebra.h>
#pragma once
#include <J3ML/Geometry/AABB2D.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/Line.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/QuadTree.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/Shape.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Triangle2D.h>
#include <J3ML/Geometry/TriangleMesh.h>
using namespace J3ML::Geometry;

View File

@@ -0,0 +1,175 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Shape.h>
#include "J3ML/Algorithm/RNG.h"
namespace J3ML::Geometry
{
using namespace J3ML::LinearAlgebra;
using J3ML::Algorithm::RNG;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
// intersection queries.
// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB : public Shape {
public:
Vector3 minPoint;
Vector3 maxPoint;
public:
static int NumFaces() { return 6; }
static int NumEdges() { return 12; }
static int NumVertices() { return 8; }
public:
AABB();
AABB(const Vector3& min, const Vector3& max);
Vector3 HalfDiagonal() const { return HalfSize(); }
static AABB FromCenterAndSize(const Vector3 &center, const Vector3 &size);
float MinX() const;
float MinY() const;
float MinZ() const;
float MaxX() const;
float MaxY() const;
float MaxZ() const;
/// Returns the smallest sphere that contains this AABB.
/// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const;
Vector3 HalfSize() const;
/// Returns the largest sphere that can fit inside this AABB
/// This function computes the largest sphere that can fit inside this AABB.
Sphere MaximalContainedSphere() const;
bool IsFinite() const;
Vector3 Centroid() const;
Vector3 Size() const;
// Quickly returns an arbitrary point inside this AABB
Vector3 AnyPointFast() const;
Vector3 PointInside(float x, float y, float z) const;
// Returns an edge of this AABB
LineSegment Edge(int edgeIndex) const;
Vector3 CornerPoint(int cornerIndex) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
Vector3 PointOnEdge(int edgeIndex, float u) const;
Vector3 FaceCenterPoint(int faceIndex) const;
Vector3 FacePoint(int faceIndex, float u, float v) const;
Vector3 FaceNormal(int faceIndex) const;
Plane FacePlane(int faceIndex) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
static AABB MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints);
float GetVolume() const;
float GetSurfaceArea() const;
Vector3 GetClosestPoint(const Vector3& point) const;
void Translate(const Vector3& offset);
AABB Translated(const Vector3& offset) const;
AABB TransformAABB(const Matrix3x3& transform);
AABB TransformAABB(const Matrix4x4& transform);
AABB TransformAABB(const Quaternion& transform);
OBB Transform(const Matrix3x3& transform) const;
OBB Transform(const Matrix4x4& transform) const;
OBB Transform(const Quaternion& transform) const;
bool Contains(const Vector3& point) const;
bool Contains(const Vector3& aabbMinPoint, const Vector3& aabbMaxPoint) const;
bool Contains(const LineSegment& lineSegment) const;
bool Contains(const AABB& aabb) const;
bool Contains(const OBB& obb) const;
bool Contains(const Sphere& sphere) const;
bool Contains(const Triangle& triangle) const;
bool Contains(const Polygon& polygon) const;
bool Contains(const Frustum& frustum) const;
bool Contains(const Polyhedron& polyhedron) const;
bool Contains(const Capsule& capsule) const;
// Tests whether this AABB and the given object intersect.
bool Intersects(const Ray& ray, float dNear, float dFar) const;
bool Intersects(const Capsule& capsule) const;
bool Intersects(const Triangle& triangle) const;
bool Intersects(const Polygon& polygon) const;
bool Intersects(const Frustum& frustum) const;
bool Intersects(const Polyhedron& polyhedron) const;
TriangleMesh Triangulate(int numFacesX, int numFacesY, int numFacesZ, bool ccwIsFrontFacing) const;
/// Finds the set intersection of this and the given AABB.
/** @return This function returns the AABB that is contained in both this and the given AABB.
@todo Add Intersection(OBB/Polyhedron). */
AABB Intersection(const AABB& rhs) const;
void SetFrom(const Vector3 *pVector3, int i);
void SetFromCenterAndSize(const Vector3 &center, const Vector3 &size);
void SetFrom(const OBB &obb);
void SetFrom(const Sphere &s);
Vector3 GetRandomPointInside(RNG& rng) const;
Vector3 GetRandomPointOnSurface(RNG& rng) const;
Vector3 GetRandomPointOnEdge(RNG& rng) const;
Vector3 GetRandomCornerPoint(RNG& rng) const;
void SetNegativeInfinity();
void Enclose(const Vector3 &point);
void Enclose(const Vector3 &aabbMinPt, const Vector3 &aabbMaxPt);
void Enclose(const LineSegment &lineSegment);
void Enclose(const OBB &obb);
bool TestAxis(const Vector3& axis, const Vector3& v0, const Vector3& v1, const Vector3& v2) const;
bool Intersects(const LineSegment &lineSegment) const;
/// Computes the intersection of a line, ray or line segment and an AABB.
/** Based on "T. Kay, J. Kajiya. Ray Tracing Complex Scenes. SIGGRAPH 1986 vol 20, number 4. pp. 269-"
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
@param linePos The starting position of the line.
@param lineDir The direction of the line. This direction vector must be normalized!
@param tNear [in, out] For the test, the input line is treated as a line segment. Pass in the signed distance
from the line origin to the start of the line. For a Line-AABB test, -FLOAT_INF is typically passed here.
For a Ray-AABB test, 0.0f should be inputted. If intersection occurs, the signed distance from line origin
to the line entry point in the AABB is returned here.
@param tFar [in, out] Pass in the signed distance from the line origin to the end of the line. For Line-AABB and
Ray-AABB tests, pass in FLOAT_INF. For a LineSegment-AABB test, pass in the length of the line segment here.
If intersection occurs, the signed distance from line origin to the line exit point in the AABB
is returned here.
@return True if an intersection occurs, false otherwise.
@note This is a low level utility function. It may be more convenient to use one of the AABB::Intersects()
functions instead.
@see Intersects(). */
bool IntersectLineAABB(const Vector3& linePos, const Vector3& lineDir, float tNear, float tFar) const;
bool IntersectLineAABB_CPP(const Vector3 &linePos, const Vector3 &lineDir, float &tNear, float &tFar) const;
};
}

View File

@@ -0,0 +1,54 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
#include "Shape.h"
namespace J3ML::Geometry
{
using LinearAlgebra::Vector2;
// CaveGame AABB
class AABB2D : public Shape2D
{
public:
Vector2 minPoint;
Vector2 maxPoint;
AABB2D() {}
AABB2D(const Vector2& min, const Vector2& max):
minPoint(min), maxPoint(max)
{}
float Width() const;
float Height() const;
float DistanceSq(const Vector2& pt) const;
void SetNegativeInfinity();
void Enclose(const Vector2& point);
bool Intersects(const AABB2D& rhs) const;
bool Contains(const AABB2D& rhs) const;
bool Contains(const Vector2& pt) const;
bool Contains(int x, int y) const;
bool IsDegenerate() const;
bool HasNegativeVolume() const;
bool IsFinite() const;
Vector2 PosInside(const Vector2 &normalizedPos) const;
Vector2 ToNormalizedLocalSpace(const Vector2 &pt) const;
AABB2D operator+(const Vector2& pt) const;
AABB2D operator-(const Vector2& pt) const;
};
}

View File

@@ -0,0 +1,79 @@
#pragma once
#include "LineSegment.h"
#include "Shape.h"
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/Geometry/Common.h>
namespace J3ML::Geometry
{
// TODO: Move to separate math lib, find duplicates!
template <typename T>
void Swap(T &a, T &b)
{
T temp = std::move(a);
a = std::move(b);
b = std::move(temp);
}
using namespace LinearAlgebra;
class Capsule : public Shape
{
public:
// Specifies the two inner points of this capsule
LineSegment l;
// Specifies the radius of this capsule
float r;
public:
Capsule();
Capsule(const LineSegment& endPoints, float radius);
Capsule(const Vector3& bottomPt, const Vector3& topPt, float radius);
/// Quickly returns an arbitrary point inside this Capsule. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return l.A; }
/// Computes the extreme point of this Capsule in the given direction.
/** An extreme point is a farthest point of this Capsule in the given direction. Given a direction,
this point is not necessarily unique.
@param direction The direction vector of the direction to find the extreme point. This vector may
be unnormalized, but may not be null.
@return The extreme point of this Capsule in the given direction. */
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
bool IsDegenerate() const;
float Height() const;
float Diameter() const;
Vector3 Bottom() const;
Vector3 Center() const;
Vector3 Centroid() const;
Vector3 ExtremePoint(const Vector3& direction);
AABB MinimalEnclosingAABB() const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
bool Intersects(const Plane &plane) const;
bool Intersects(const Ray &ray) const;
bool Intersects(const Line &line) const;
bool Intersects(const LineSegment &lineSegment) const;
bool Intersects(const AABB &aabb) const;
bool Intersects(const OBB &obb) const;
bool Intersects(const Sphere &sphere) const;
bool Intersects(const Capsule &capsule) const;
bool Intersects(const Triangle &triangle) const;
bool Intersects(const Polygon &polygon) const;
bool Intersects(const Frustum &frustum) const;
bool Intersects(const Polyhedron &polyhedron) const;
};
}

View File

@@ -0,0 +1,31 @@
#pragma once
// Forward declarations for classes that include each other
namespace J3ML::Geometry
{
class Shape;
class AABB2D;
class AABB;
class Capsule;
class Frustum;
class LineSegment;
class Line;
class OBB;
class Plane;
class Polygon;
class Polyhedron;
template<typename T> class QuadTree;
class Ray;
class Shape;
class Sphere;
class Triangle;
class Triangle2D;
class TriangleMesh;
}
// Methods required by Geometry types
namespace J3ML::Geometry
{
}

View File

@@ -0,0 +1,243 @@
//
// Created by dawsh on 1/25/24.
//
#pragma once
#include <J3ML/Geometry/Common.h>
#include "Plane.h"
#include "Shape.h"
#include <J3ML/LinearAlgebra.h>
namespace J3ML::Geometry
{
/// A frustum can be set to one of the two common different forms.
enum class FrustumType
{
Invalid = 0,
/// Set the Frustum type to this value to define the orthographic projection formula. In orthographic projection,
/// 3D images are projected onto a 2D plane essentially by flattening the object along one direction (the plane normal).
/// The size of the projected images appear the same independent of their distance to the camera, and distant objects will
/// not appear smaller. The shape of the Frustum is identical to an oriented bounding box (OBB).
Orthographic,
/// Set the Frustum type to this value to use the perspective projection formula. With perspective projection, the 2D
/// image is formed by projecting 3D points towards a single point (the eye point/tip) of the Frustum, and computing the
/// point of intersection of the line of the projection and the near plane of the Frustum.
/// This corresponds to the optics in the real-world, and objects become smaller as they move to the distance.
/// The shape of the Frustum is a rectangular pyramid capped from the tip.
Perspective
};
/// The Frustum class offers choosing between the two common conventions for the value ranges in
/// post-projective space. If you are using either the OpenGL or Direct3D API, you must feed the API data that matches
/// the correct convention.
enum class FrustumProjectiveSpace
{
Invalid = 0,
/// If this option is chosen, the post-projective unit cube of the Frustum
/// is modelled after the OpenGL API convention, meaning that in projected space,
/// points inside the Frustum have the X and Y range in [-1, 1] and Z ranges in [-1, 1],
/// where the near plane maps to Z=-1 and the far plane maps to Z=1.
/// @note If you are submitting projection matrices to GPU hardware using the OpenGL API,
/// you **must** use this convention. (or otherwise more than half of the precision of the GL depth buffer is wasted)
GL,
/// If this option is chosen, the post-projective unit cube is modelled after the
/// Direct3D API convention, which differs from the GL convention that Z ranges in [0, 1] instead.
/// Near plane maps to Z=0, and far plane maps to Z=1. The X and Y ranges in [-1, 1] as is with GL.
/// @note If you are submitting projection matrices to GPU hardware using the Direct3D API,
/// you **must** use this convention.
D3D,
};
/// The handedness rule in J3ML bundles together two different conventions related to the camera:
/// * the chirality of the world and view spaces,
/// * the fixed local front direction of the Frustum.
/// @note The world and view spaces are always assumed to the same chirality, meaning that Frustum::ViewMatrix()
/// (and hence Frustum::WorldMatrix()) always returns a matrix with a positive determinant, i.e. it does not mirror.
/// If FrustumRightHanded is chosen, then Frustum::ProjectionMatrix() is a mirroring matrix, since the post-projective space
/// is always left-handed.
/// @note Even though in the local space of the camera +Y is always up, in the world space one can use any 'world up' direction
/// as one pleases, by orienting the camera via the Frustum::up vector.
enum class FrustumHandedness
{
Invalid = 0,
/// If a Frustum is left-handed, then in the local space of the Frustum (the view space), the camera looks towards +Z,
/// while +Y goes towards up, and +X goes towards right.
/// @note The fixed-pipeline D3D9 API traditionally used the FrustumLeftHanded convention.
Left,
/// If a Frustum is right-handed, then the camera looks towards -Z, +Y is up, and +X is right.
/// @note The fixed-pipeline OpenGL API traditionally used the FrustumRightHanded convention.
Right
};
/// Represents either an orthographic or a perspective viewing frustum.
class Frustum : public Shape {
public: /// Members
/// Specifies whether this frustum is a perspective or an orthographic frustum.
FrustumType type;
/// Specifies whether the [-1, 1] or [0, 1] range is used for the post-projective depth range.
FrustumProjectiveSpace projectiveSpace;
/// Specifies the chirality of world and view spaces
FrustumHandedness handedness;
/// The eye point of this frustum
Vector3 pos;
/// The normalized direction this frustum is watching towards.
Vector3 front;
/// The normalized up direction for this frustum.
/// This vector is specified in world (global) space. This vector is always normalized.
/// @note The vectors front and up must always be perpendicular to each other. This means that this up vector is not
/// a static/constant up vector, e.g. (0, 1, 0), but changes according to when the camera pitches up and down to
/// preserve the condition that front and up are always perpendicular
/// @note In the _local_ space of the Frustum, the direction +y is _always_ the up direction and cannot be changed. This
/// coincides to how Direct3D and OpenGL view and projection matrices are constructed
Vector3 up;
/// Distance from the eye point to the front plane
/// This parameter must be positive. If perspective projection is used, this parameter must be strictly positive
/// (0 is not allowed). If orthographic projection is used, 0 is possible (but uncommon, and not recommended).
/// When using the Frustum class to derive perspective projection matrices for a GPU, it should be noted that too
/// small values cause poor resolution of Z values near the back plane in post-perspective space, if non-linear
/// depth is used (which is common). The larger this value is, the more resolution there is for the Z values across the
/// depth range. Too large values cause clipping of geometry when they come very near the camera. */
float nearPlaneDistance;
/// Distance from the eye point to the back plane of the projection matrix.
/// This parameter must be strictly greater than nearPlaneDistance. The range [nearPlaneDistance, farPlaneDistance]
// specifies the visible range of objects inside the Frustum. When using the Frustum class for deriving perspective
// projection matrix for GPU rendering, it should be remembered that any geometry farther from the camera (in Z value)
// than this distance will be clipped from the view, and not rendered.
float farPlaneDistance;
union {
/// Horizontal field-of-view, in radians. This field is only valid if type == PerspectiveFrustum.
/** @see type. */
float horizontalFov;
/// The width of the orthographic frustum. This field is only valid if type == OrthographicFrustum.
/** @see type. */
float orthographicWidth;
};
union {
/// Vertical field-of-view, in radians. This field is only valid if type == PerspectiveFrustum.
/** @see type. */
float verticalFov;
/// The height of the orthographic frustum. This field is only valid if type == OrthographicFrustum.
/** @see type. */
float orthographicHeight;
};
void WorldMatrixChanged();
void ProjectionMatrixChanged();
/// Frustums are typically used in batch culling operations.
/// Therefore the matrices associated with a frustum are cached for immediate access.
Matrix4x4 worldMatrix;
Matrix4x4 projectionMatrix;
Matrix4x4 viewProjectionMatrix;
public: /// Methods
Frustum()
: type(FrustumType::Invalid),
pos(Vector3::NaN),
front(Vector3::NaN),
up(Vector3::NaN),
nearPlaneDistance(NAN),
farPlaneDistance(NAN),
worldMatrix(Matrix4x4::NaN),
viewProjectionMatrix(Matrix4x4::NaN)
{
// For conveniency, allow automatic initialization of the graphics API and handedness in use.
// If neither of the #defines are set, user must specify per-instance.
}
/// Quickly returns an arbitrary point inside this Frustum. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return CornerPoint(0); }
static Frustum CreateFrustumFromCamera(const CoordinateFrame& cam, float aspect, float fovY, float zNear, float zFar);
AABB MinimalEnclosingAABB() const;
OBB MinimalEnclosingOBB() const;
void SetKind(FrustumProjectiveSpace projectiveSpace, FrustumHandedness handedness);
void SetViewPlaneDistances(float nearPlaneDistance, float farPlaneDistance);
void SetFrame(const Vector3& pos, const Vector3& front, const Vector3& up);
void SetPos(const Vector3& pos);
void SetFront(const Vector3& front);
void SetUp(const Vector3& up);
void SetPerspective(float horizontalFov, float verticalFov);
void SetOrthographic(float orthographicWidth, float orthographicHeight);
FrustumHandedness Handedness() const { return handedness; }
FrustumType Type() const { return type; }
FrustumProjectiveSpace ProjectiveSpace() const { return projectiveSpace;}
const Vector3 &Pos() const {return pos;}
const Vector3 &Front() const { return front; }
const Vector3 &Up() const { return up; }
float NearPlaneDistance() const { return nearPlaneDistance; }
float FarPlaneDistance() const { return farPlaneDistance;}
float HorizontalFov() const { return horizontalFov;}
float VerticalFov() const { return verticalFov;}
float OrthographicWidth() const { return orthographicWidth; }
float OrthograhpicHeight() const { return orthographicHeight; }
int NumEdges() const { return 12; }
float AspectRatio() const;
void SetHorizontalFovAndAspectRatio(float horizontalFov, float aspectRatio);
Vector3 CornerPoint(int cornerIndex) const;
Vector3 NearPlanePos(float x, float y) const;
Vector3 FarPlanePos(float x, float y) const;
Vector3 WorldRight() const
{
if (handedness == FrustumHandedness::Right)
return Vector3::Cross(front, up);
else
return Vector3::Cross(up, front);
}
Plane TopPlane() const;
Plane BottomPlane() const;
Plane RightPlane() const;
Plane LeftPlane() const;
Plane FarPlane() const;
Plane NearPlane() const;
float NearPlaneWidth() const;
float NearPlaneHeight() const;
void Translate(const Vector3& offset);
void Transform(const Matrix3x3& transform);
void Transform(const Matrix4x4& transform);
void Transform(const Quaternion& transform);
Polyhedron ToPolyhedron() const;
bool Intersects(const Ray& ray) const;
//bool Intersects(const Line& line) const;
bool Intersects(const LineSegment& lineSegment) const;
bool Intersects(const AABB& aabb) const;
bool Intersects(const OBB& obb) const;
bool Intersects(const Plane& plane) const;
bool Intersects(const Triangle& triangle) const;
bool Intersects(const Polygon& lineSegment) const;
bool Intersects(const Sphere& aabb) const;
bool Intersects(const Capsule& obb) const;
bool Intersects(const Frustum& plane) const;
bool Intersects(const Polyhedron& triangle) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
void GetCornerPoints(Vector3 *outPointArray) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
LineSegment Edge(int edgeIndex) const;
bool Intersects(const Line &line) const;
};
}

View File

@@ -0,0 +1,24 @@
#pragma once
#include "LineSegment.h"
namespace J3ML::Geometry
{
class Line
{
public:
Vector3 Position; /// Specifies the origin of this line.
Vector3 Direction; /// The normalized direction vector of this ray.
public:
static void
ClosestPointLineLine(const Vector3 &v0, const Vector3 &v10, const Vector3 &v2, const Vector3 &v32, float &d,
float &d2);
Vector3 ClosestPoint(const J3ML::Geometry::LineSegment &other, float &d, float &d2) const;
Vector3 GetPoint(float d) const;
Vector3 ClosestPoint(const Vector3 &targetPoint, float &d) const;
};
}

View File

@@ -0,0 +1,92 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include "Plane.h"
#include <J3ML/Geometry/Common.h>
namespace J3ML::Geometry
{
/// Clamps the given input value to the range [min, max].
/** @see Clamp01(), Min(), Max(). */
template<typename T>
T Clamp(const T &val, const T &floor, const T &ceil)
{
assert(floor <= ceil);
return val <= ceil ? (val >= floor ? val : floor) : ceil;
}
/// Clamps the given input value to the range [0, 1].
/** @see Clamp(), Min(), Max(). */
template<typename T>
T Clamp01(const T &val) { return Clamp(val, T(0), T(1)); }
using LinearAlgebra::Vector3;
class LineSegment
{
public:
Vector3 A;
Vector3 B;
public:
LineSegment();
LineSegment(const Vector3& a, const Vector3& b);
/// Computes the closest point on this line segment to the given object.
/** @param d [out] If specified, this parameter receives the normalized distance along
this line segment which specifies the closest point on this line segment to
the specified point.
@return The closest point on this line segment to the given object.
@see Contains(), Distance(), Intersects(). */
Vector3 ClosestPoint(const Vector3 &point) const;
bool Contains(const Vector3& point, float distanceThreshold = 1e-3f) const;
/// Quickly returns an arbitrary point inside this LineSegment. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return A; }
/// Computes an extreme point of this LineSegment in the given direction.
/** An extreme point is a farthest point along this LineSegment in the given direction. Given a direction,
this point is not necessarily unique.
@param direction The direction vector of the direction to find the extreme point. This vector may
be unnormalized, but may not be null.
@return An extreme point of this LineSegment in the given direction. The returned point is always
either a or b.
@see a, b.*/
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
Vector3 GetPoint(float d) const;
Vector3 ClosestPoint(const Vector3 &point, float &d) const;
Vector3 ClosestPoint(const Ray &other, float &d, float &d2) const;
float Distance(const Vector3 &point) const;
float DistanceSq(const Vector3& point) const;
float Distance(const Vector3 &point, float &d) const;
float Distance(const Ray &other) const;
float Distance(const Ray &other, float &d) const;
float Distance(const Ray &other, float &d, float &d2) const;
float Distance(const Line &other) const;
float Distance(const Line &other, float &d) const;
float Distance(const Line &other, float &d, float &d2) const;
float Distance(const LineSegment &other) const;
float Distance(const LineSegment &other, float &d) const;
float Distance(const LineSegment &other, float &d, float &d2) const;
float Distance(const Plane& other) const;
Vector3 Dir() const;
float Length() const;
float LengthSq() const;
float DistanceSq(const LineSegment &other) const;
Vector3 ClosestPoint(const LineSegment &other, float &d, float &d2) const;
Vector3 ClosestPoint(const Line &other, float &d, float &d2) const;
bool Intersects(const LineSegment &segment) const;
};
LineSegment operator *(const Matrix4x4 &transform, const LineSegment &l);
}

106
include/J3ML/Geometry/OBB.h Normal file
View File

@@ -0,0 +1,106 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Polyhedron.h>
namespace J3ML::Geometry {
/// A 3D arbitrarily oriented bounding box
// This data structure represents a box in 3D space. The local axes of this box can be arbitrarily oriented/rotated
// with respect to the global world coordinate system. This allows OBBs to more tightly bound objects than AABBs do,
// which always align with the world space axes. This flexibility has the drawback that the geometry tests and operations
// involving OBBs are more costly, and representing an OBB in memory takes more space (15 floats vs 6 floats)
class OBB : public Shape
{
public:
// The center position of this OBB
Vector3 pos;
// Stores half-sizes to x, y, and z directions in the local space of this OBB.
Vector3 r;
// Specifies normalized direction vectors for the local axes
Vector3 axis[3];
/// Default constructor that does not initialize any member values.
OBB() {}
// Constructs an OBB by explicitly initializing all member values
OBB(const Vector3& pos, const Vector3& radii, const Vector3& axis0, const Vector3& axis1, const Vector3& axis2);
OBB(const AABB& aabb);
inline static int NumFaces() { return 6; }
inline static int NumEdges() { return 12; }
inline static int NumVertices() { return 8; }
Polyhedron ToPolyhedron() const;
//PBVolume<6> ToPBVolume() const;
AABB MinimalEnclosingAABB() const
{
AABB aabb;
aabb.SetFrom(*this);
return aabb;
}
bool Intersects(const LineSegment &lineSegment) const;
Sphere MinimalEnclosingSphere() const;
Sphere MaximalContainedSphere() const;
Vector3 Size() const;
Vector3 HalfSize() const;
Vector3 Diagonal() const;
Vector3 HalfDiagonal() const;
void Transform(const Matrix3x3& transform);
void Transform(const Matrix4x4& transform);
void Transform(const Quaternion& transform);
bool IsFinite() const;
bool IsDegenerate() const;
Vector3 CenterPoint() const;
Vector3 Centroid() const;
Vector3 AnyPointFast() const { return pos; }
float Volume() const;
float SurfaceArea() const;
Geometry::LineSegment Edge(int edgeIndex) const;
Vector3 CornerPoint(int cornerIndex) const;
Vector3 PointInside(float x, float y, float z) const;
Vector3 PointInside(const Vector3& pt) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
int UniqueFaceNormals(Vector3 *out) const;
int UniqueEdgeDirections(Vector3 *out) const;
Vector3 PointOnEdge(int edgeIndex, float u) const;
Vector3 FaceCenterPoint(int faceIndex) const;
void GetCornerPoints(Vector3 *outPointArray) const;
void GetFacePlanes(Plane *outPlaneArray) const;
Plane FacePlane(int faceIndex) const;
void ExtremePointsAlongDirection(const Vector3 &dir, const Vector3 *pointArray, int numPoints, int &idxSmallest,
int &idxLargest, float &smallestD, float &largestD);
Vector3 FacePoint(int faceIndex, float u, float v) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
void SetFrom(const AABB &aabb, const Matrix3x3 &transform);
void SetFrom(const AABB &aabb, const Matrix4x4 &transform);
void SetFrom(const AABB &aabb, const Quaternion &transform);
bool Intersects(const Plane& plane) const;
Matrix4x4 LocalToWorld() const;
Matrix4x4 WorldToLocal() const;
};
}

View File

@@ -0,0 +1,86 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include "Shape.h"
#include "Ray.h"
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Vector3;
class Plane : public Shape
{
public:
Vector3 Position;
Vector3 Normal;
float distance = 0.f;
public:
Plane() : Shape() {}
Plane(const Vector3& v1, const Vector3 &v2, const Vector3& v3);
Plane(const Vector3& pos, const Vector3& norm);
Plane(const Line &line, const Vector3 &normal);
void Set(const Vector3& v1, const Vector3& v2, const Vector3& v3);
void Set(const Vector3 &point, const Vector3 &normal_);
bool Intersects(J3ML::Geometry::Ray ray, float *dist) const;
/// Tests if the given point lies on the positive side of this plane.
/** A plane divides the space in three sets: the negative halfspace, the plane itself, and the positive halfspace.
The normal vector of the plane points towards the positive halfspace.
@return This function returns true if the given point lies either on this plane itself, or in the positive
halfspace of this plane.
@see IsInPositiveDirection, AreOnSameSide(), Distance(), SignedDistance(). */
bool IsOnPositiveSide(const Vector3 &point) const;
float SignedDistance(const Vector3 &point) const;
float SignedDistance(const AABB &aabb) const;
float SignedDistance(const OBB &obb) const;
float SignedDistance(const Capsule &capsule) const;
//float Plane::SignedDistance(const Circle &circle) const { return Plane_SignedDistance(*this, circle); }
float SignedDistance(const Frustum &frustum) const;
//float SignedDistance(const Line &line) const { return Plane_SignedDistance(*this, line); }
float SignedDistance(const LineSegment &lineSegment) const;
float SignedDistance(const Ray &ray) const;
//float Plane::SignedDistance(const Plane &plane) const { return Plane_SignedDistance(*this, plane); }
float SignedDistance(const Polygon &polygon) const;
float SignedDistance(const Polyhedron &polyhedron) const;
float SignedDistance(const Sphere &sphere) const;
float SignedDistance(const Triangle &triangle) const;
static bool
IntersectLinePlane(const Vector3 &planeNormal, float planeD, const Vector3 &linePos, const Vector3 &lineDir,
float &t);
float Distance(const Vector3 &) const;
float Distance(const LineSegment &lineSegment) const;
float Distance(const Sphere &sphere) const;
float Distance(const Capsule &capsule) const;
bool Intersects(const Line &line, float *dist) const;
bool Intersects(const LineSegment &lineSegment, float *dist) const;
bool Intersects(const Sphere &sphere) const;
bool Intersects(const Capsule &capsule) const;
bool Intersects(const AABB &aabb) const;
bool Intersects(const OBB &obb) const;
bool Intersects(const Triangle &triangle) const;
bool Intersects(const Frustum &frustum) const;
bool Intersects(const Polyhedron &polyhedron) const;
LineSegment Project(const LineSegment &segment);
Vector3 Project(const Vector3 &point) const;
};
}

View File

@@ -0,0 +1,87 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <vector>
#include "Shape.h"
#include "J3ML/LinearAlgebra.h"
namespace J3ML::Geometry {
class Polygon : public Shape
{
public:
std::vector<Vector3> vertices;
/// Quickly returns an arbitrary point inside this AABB. Used in GJK intersection test.
Vector3 AnyPointFast() const { return !vertices.empty() ? vertices[0] : Vector3::NaN; }
AABB MinimalEnclosingAABB() const;
int NumVertices() const;
Vector3 Vertex(int vertexIndex) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
bool Intersects(const Capsule &capsule) const;
bool Intersects(const Line &line) const;
bool Intersects(const Ray &ray) const;
bool Intersects(const LineSegment &lineSegment) const;
bool Intersects(const Plane &plane) const;
bool Intersects(const AABB &aabb) const;
bool Intersects(const OBB &obb) const;
bool Intersects(const Triangle &triangle, float polygonThickness = 1e-3f) const;
bool Intersects(const Polygon &polygon, float polygonThickness = 1e-3f) const;
bool Intersects(const Frustum &frustum) const;
bool Intersects(const Polyhedron &polyhedron) const;
bool Intersects(const Sphere &sphere) const;
std::vector<Triangle> Triangulate() const;
/// Tests if this polygon is planar.
/** A polygon is planar if all its vertices lie on the same plane.
@note Almost all functions in this class require that the polygon is planar. While you can store vertices of
non-planar polygons in this class, they are better avoided. Read the member function documentation carefully
to avoid calling for non-planar polygons any functions which assume planarity.
@see IsConvex(), IsSimple(), IsNull(), IsFinite(), IsDegenerate(). */
bool IsPlanar(float epsilonSq = 1e-4f) const;
Vector2 MapTo2D(int i) const;
Vector2 MapTo2D(const Vector3 &point) const;
Vector3 BasisU() const;
Vector3 BasisV() const;
Plane PlaneCCW() const;
bool Contains(const Polygon &worldSpacePolygon, float polygonThickness) const;
bool Contains(const Vector3 &worldSpacePoint, float polygonThicknessSq = 1e-2f) const;
bool Contains(const LineSegment &worldSpaceLineSegment, float polygonThickness) const;
bool Contains(const Triangle &worldSpaceTriangle, float polygonThickness) const;
LineSegment Edge(int i) const;
bool ConvexIntersects(const AABB &aabb) const;
bool ConvexIntersects(const OBB &obb) const;
bool ConvexIntersects(const Frustum &frustum) const;
Vector3 MapFrom2D(const Vector2 &point) const;
bool Intersects2D(const LineSegment &segment) const;
Vector3 ClosestPoint(const LineSegment &lineSegment) const;
Vector3 ClosestPoint(const LineSegment &lineSegment, Vector3 *lineSegmentPt) const;
Vector3 ClosestPoint(const Vector3 &point) const;
protected:
};
}

View File

@@ -0,0 +1,111 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Shape.h>
#include <vector>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
using namespace J3ML::LinearAlgebra;
// Represents a three-dimensional closed geometric solid defined by flat polygonal faces.
class Polyhedron : public Shape
{
public:
// Stores a list of indices of a single face of a Polygon
struct Face
{
// Specifies the indices of the corner vertices of the polyhedron.
// Indices point to the polyhedron vertex array.
// The face vertices should all lie on the same plane.
// The positive direction of the plane (the direction the face outwards normal points)
// is the one where the vertices are wound in counter-clockwise order.
std::vector<int> v;
// Reverses the winding order of this face. This has the effect of reversing the direction
// the normal of this face points to.
void FlipWindingOrder();
};
// Specifies the vertices of this polyhedron.
std::vector<Vector3> v;
std::vector<Face> f;
int NumVertices() const {return (int)v.size();}
int NumFaces() const { return (int)f.size();}
AABB MinimalEnclosingAABB() const;
Vector3 Vertex(int vertexIndex) const;
bool Contains(const Vector3&) const;
bool Contains(const LineSegment&) const;
bool Contains(const Triangle&) const;
bool Contains(const Polygon&) const;
bool Contains(const AABB&) const;
bool Contains(const OBB&) const;
bool Contains(const Frustum&) const;
bool Contains(const Polyhedron&) const;
bool ContainsConvex(const Vector3&, float epsilon = 1e-4f) const;
bool ContainsConvex(const LineSegment&) const;
bool ContainsConvex(const Triangle&) const;
bool Intersects(const Line&) const;
bool Intersects(const LineSegment&) const;
bool Intersects(const Ray&) const;
bool Intersects(const Plane&) const;
bool Intersects(const Polyhedron&) const;
bool Intersects(const AABB&) const;
bool Intersects(const OBB&) const;
bool Intersects(const Triangle&) const;
bool Intersects(const Polygon&) const;
bool Intersects(const Frustum&) const;
bool Intersects(const Sphere&) const;
bool Intersects(const Capsule& capsule) const;
bool IsClosed() const;
Plane FacePlane(int faceIndex) const;
std::vector<Polygon> Faces() const;
int NumEdges() const;
LineSegment Edge(int edgeIndex) const;
std::vector<std::pair<int, int>> EdgeIndices() const;
std::vector<LineSegment> Edges() const;
Polygon FacePolygon(int faceIndex) const;
Vector3 FaceNormal(int faceIndex) const;
bool IsConvex() const;
Vector3 ApproximateConvexCentroid() const;
int ExtremeVertex(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
/// Tests if the given face of this Polyhedron contains the given point.
bool FaceContains(int faceIndex, const Vector3 &worldSpacePoint, float polygonThickness = 1e-3f) const;
/// A helper for Contains() and FaceContains() tests: Returns a positive value if the given point is contained in the given face,
/// and a negative value if the given point is outside the face. The magnitude of the return value reports a pseudo-distance
/// from the point to the nearest edge of the face polygon. This is used as a robustness/stability criterion to estimate how
/// numerically believable the result is.
float FaceContainmentDistance2D(int faceIndex, const Vector3 &worldSpacePoint, float polygonThickness = 1e-5f) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
Vector3 ClosestPoint(const LineSegment& lineSegment, Vector3 *lineSegmentPt) const;
protected:
private:
};
}

View File

@@ -0,0 +1,369 @@
#pragma once
#include <vector>
#include <cstdint>
#include <J3ML/LinearAlgebra/Vector2.h>
#include "AABB2D.h"
namespace J3ML::Geometry {
using LinearAlgebra::Vector2;
template<typename T>
class QuadTree {
/// A fixed split rule for all QuadTrees: A QuadTree leaf node is only ever split if the leaf contains at least this many objects.
/// Leaves containing fewer than this many objects are always kept as leaves until the object count is exceeded.
constexpr static const int minQuadTreeNodeObjectCount = 16;
/// A fixed split limit rule for all QuadTrees: If the QuadTree node side length is smaller than this, the node will
/// never be split again into smaller subnodes. This provides a hard limit safety net for infinite/extra long recursion
/// in case multiple identical overlapping objects are placed into the tree.
constexpr static const float minQuadTreeQuadrantSize = 0.05f;
public:
struct Node {
Node *parent;
uint32_t childIndex;
std::vector<T> objects;
Vector2 center;
Vector2 radius;
bool IsLeaf() const { return childIndex == 0xFFFFFFFF; }
uint32_t TopLeftChildIndex() const { return childIndex; }
uint32_t TopRightChildIndex() const { return childIndex + 1; }
uint32_t BottomLeftChildIndex() const { return childIndex + 2; }
uint32_t BottomRightChildIndex() const { return childIndex + 3; }
/// This assumes that the QuadTree contains unique objects and never duplicates
void Remove(const T &object) {
for (size_t i = 0; i < objects.size(); ++i) {
if (objects[i] == object) {
AssociateQuadTreeNode(object,
0); // Mark in the object that it has been removed from the QuadTree.
std::swap(objects[i], objects.back());
objects.pop_back();
return;
}
}
}
AABB2D ComputeAABB() {}
float DistanceSq(const Vector2 &point) const {
Vector2 centered = point - center;
Vector2 closestPoint = centered.Clamp(-radius, radius);
return closestPoint.DistanceSq(centered);
}
};
// Helper struct used when traversing through the tree
struct TraversalStackItem {
Node *node;
};
QuadTree() :
rootNodeIndex(-1),
boundingAABB(Vector2(0, 0), Vector2(0, 0)) {
// TODO: currently storing persistent raw pointers to this array outside the array
nodes.reserve(200000);
}
/// Removes all nodes and objects in this tree and reintializes the tree to a single root node.
void Clear(const Vector2 &minXY = Vector2(-1, -1), const Vector2 &maxXY = Vector2(1, 1));
/// Places the given object onto the proper (leaf) node of the tree. After placing, if the leaf split rule is
/// satisfied, subdivides the leaf node into 4 subquadrants and reassings the objects to the new leaves.
void Add(const T &object);
/// Removes the given object from this tree.
/// To call this function, you must define a function QuadTree<T>::Node *GetQuadTreeNode(const T& object)
/// which returns the node of this quadtree where the object resides in.
void Remove(const T &object);
/// @return The bounding rectangle for the whole tree.
/// @note This bounding rectangle does not tightly bound the objects themselves, only the root node of the tree.
AABB2D BoundingAABB() const { return boundingAABB; }
/// @return The topmost node in the tree.
Node *Root();
const Node *Root() const;
/// Returns the total number of nodes (all nodes, i.e. inner nodes + leaves) in the tree.
/// Runs in constant time.
int NumNodes() const;
/// Returns the total number of leaf nodes in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumLeaves() const;
/// Returns the total number of inner nodes in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumInnerNodes() const;
/// Returns the total number of objects stored in the tree.
/// @warning Runs in time linear 'O(n)' to the number of nodes in the tree.
int NumObjects() const;
/// Returns the maximum height of the whole tree (the path from the root to the farthest leaf node).
int TreeHeight() const;
/// Returns the height of the subtree rooted at 'node'.
int TreeHeight(const Node *node) const;
/// Performs an AABB intersection query in this Quadtreee, and calls the given callback function for each non-empty
/// node of the tree which intersects the given AABB.
/** @param aabb The axis-aligned bounding box to intersect this QuadTree with.
@param callback A function or a function object of prototype
bool callbackFunction(QuadTree<T> &tree, const AABB2D &queryAABB, QuadTree<T>::Node &node);
If the callback function returns true, the execution of the query is stopped and this function immediately
returns afterwards. If the callback function returns false, the execution of the query continues. */
template<typename Func>
inline void AABBQuery(const AABB2D &aabb, Func &callback);
/// Finds all object pairs inside the given AABB which have colliding AABBs. For each such pair, calls the
/// specified callback function.
template<typename Func>
inline void CollidingPairsQuery(const AABB2D &aabb, Func &callback);
/// Performs various consistency checks on the given node. Use only for debugging purposes.
void DebugSanityCheckNode(Node *n);
private:
void Add(const T &object, Node *n);
/// Allocates a sequential 4-tuple of QuadtreeNodes, contiguous in memory.
int AllocateNodeGroup(Node *parent);
void SplitLeaf(Node *leaf);
std::vector<Node> nodes;
int rootNodeIndex;
AABB2D boundingAABB;
void GrowRootTopLeft();
void GrowRootTopRight();
void GrowRootBottomLeft();
void GrowRootBottomRight();
void GrowImpl(int quadrantForRoot);
};
// NOTE: Keep members defined here. Template-parameterized classes
// can't be split across header and implementation files
// but the presence of the implementation file is a requirement
template<typename T>
void QuadTree<T>::Clear(const Vector2 &minXY, const Vector2 &maxXY) {
nodes.clear();
boundingAABB.minPoint = minXY;
boundingAABB.maxPoint = maxXY;
rootNodeIndex = AllocateNodeGroup(0);
Node *root = Root();
root->center = (minXY + maxXY) * 0.5f;
root->radius = maxXY - root->center;
}
template<typename T>
void QuadTree<T>::Add(const T &object) {
Node *n = Root();
AABB2D objectAABB = GetAABB2D(object);
// Ramen Noodle Bowls of nested if statements are generally bad practice
// Unfortunately, sometimes the problem domain makes this unavoidable
if (objectAABB.minPoint.x >= boundingAABB.minPoint.x) {
// object fits left.
if (objectAABB.maxPoint.x <= boundingAABB.maxPoint.x) {
// object fits left and right.
if (objectAABB.minPoint.y >= boundingAABB.minPoint.y) {
// Object fits left, right, and top.
if (objectAABB.maxPoint.y <= boundingAABB.maxPoint.y) {
// Object fits the whole root AABB. Can safely add into the existing tree size.
AddObject(object, n);
return;
} else {
// Object fits left, right, and top, but not bottom.
GrowRootBottomRight(); // Could grow bottom-left as well, wouldn't matter here.
}
} else {
// Object fits left and right, but not to top.
GrowRootTopRight(); // Could grow top-left as well, wouldn't matter here.
}
} else {
// Object fits left, but not to right. We must grow right. Check whether to grow top or bottom;
if (objectAABB.minPoint.y < boundingAABB.minPoint.y)
GrowRootTopRight();
else
GrowRootBottomRight();
}
} else {
// We must grow left. Check whether to grow top or bottom.
if (objectAABB.minPoint.y < boundingAABB.minPoint.y)
GrowRootTopLeft();
else
GrowRootBottomLeft();
}
// Now that we have grown the tree root node, try adding again.
Add(object);
}
template<typename T>
void QuadTree<T>::Remove(const T &object) {
Node *n = GetQuadTreeNode(object);
if (n) {
n->Remove(object);
}
}
template<typename T>
void QuadTree<T>::Add(const T &object, Node *n) {
for (;;) {
// Traverse the QuadTree to decide which quad to place this object on.
float left = n->center.x - MinX(object); // If left > 0.f, then the object overlaps with the left quadrant.
float right = MaxX(object) - n->center.x; // If right > 0.f, then the object overlaps with the right quadrant.
float top = n->center.y - MinY(object); // If top > 0.f, then the object overlaps with the top quadrant
float bottom =
MaxY(object) - n->center.y; // If bottom > 0.f, then the object overlaps with the bottom quadrant
float leftAndRight = std::min(left, right); // If > 0.f, then the object straddles left-right halves.
float topAndBottom = std::min(top, bottom); // If > 0.f, then the object straddles top-bottom halves.
float straddledEitherOne = std::max(leftAndRight,
topAndBottom); // If > 0.f, thne the object is in two or more quadrants.
// Note: It can happen that !left && !right, or !top && !bottom.
// but the if()s are setup below so that right/bottom is taken if no left/top, so that is ok.
// We must put the object onto this node if
// a) the object straddled the parent->child split lines.
// b) this object is a leaf
if (straddledEitherOne > 0.f) {
n->objects.push_back(object);
AssociateQuadTreeNode(object, n);
return;
}
if (n->IsLeaf()) {
n->objects.push_back(object);
AssociateQuadTreeNode(object, n);
if ((int) n->objects.size() > minQuadTreeNodeObjectCount &&
std::min(n->radius.x, n->radius.y) >= minQuadTreeQuadrantSize) {
SplitLeaf(n);
}
return;
}
if (left > 0.f) {
if (top > 0.f) {
n = &nodes[n->TopLeftChildIndex()];
} else {
n = &nodes[n->BottomLeftChildIndex()];
}
} else {
if (top > 0.f) {
n = &nodes[n->TopRightChildIndex()];
} else {
n = &nodes[n->BottomRightChildIndex()];
}
}
}
}
template<typename T>
typename QuadTree<T>::Node *QuadTree<T>::Root() {
return nodes.empty() ? 0 : &nodes[rootNodeIndex];
}
template<typename T>
const typename QuadTree<T>::Node *QuadTree<T>::Root() const {
return nodes.empty() ? 0 : &nodes[rootNodeIndex];
}
template <typename T>
int QuadTree<T>::AllocateNodeGroup(Node* parent) {
size_t oldCap = nodes.capacity();
int index = (int)nodes.size();
Node n;
n.parent = parent;
n.childIndex = 0xFFFFFFFF;
if (parent) {
n.radius = parent->radius * 0.5f;
n.center = parent->center - n.radius;
}
nodes.push_back(n);
if (parent)
n.center.x = parent->center.x + n.radius.x;
nodes.push_back(n);
if (parent) {
n.center.x = parent->center.x - n.radius.x;
n.center.y = parent->center.y + n.radius.y;
}
nodes.push_back(n);
if (parent)
n.center.x = parent->center.x + n.radius.x;
nodes.push_back(n);
return index;
}
template <typename T>
void QuadTree<T>::SplitLeaf(Node *leaf) {
leaf->childIndex = AllocateNodeGroup(leaf);
size_t i = 0;
while (i < leaf->objects.size()) {
const T& object = leaf->objects[i];
// Traverse the QuadTree to decide which quad to place this object into
float left = leaf->center.x - MinX(object);
float right = MaxX(object) - leaf->center;
float top = leaf->center.y - MinY(object);
float bottom = MaxY(object) - leaf->center.y;
float leftAndRight = std::min(left, right);
float topAndBottom = std::min(top, bottom);
float straddledEitherOne = std::max(leftAndRight, topAndBottom);
if (straddledEitherOne > 0.f) {
++i;
continue;
}
if (left > 0.f) {
if (top > 0.f) {
Add(object, &nodes[leaf->TopLeftChildIndex()]);
} else {
Add(object, &nodes[leaf->BottomLeftChildIndex()]);
}
} else {
if (top > 0.f) {
Add(object, &nodes[leaf->TopRightChildIndex()]);
} else {
Add(object, &nodes[leaf->BottomRightChildIndex()]);
}
}
// Remove the object we added to a child from this node.
leaf->objects[i] = leaf->objects.back();
leaf->objects.pop_back();
}
}
}

View File

@@ -0,0 +1,67 @@
//
// Created by dawsh on 1/25/24.
//
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <vector>
#include "TriangleMesh.h"
#include "Frustum.h"
#include "OBB.h"
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Vector3;
// RaycastResult structure containing the first object the ray collides with,
// the surface intersection point,
// and the surface normal at the point of intersection.
struct RaycastResult
{
Vector3 Intersection;
Vector3 SurfaceNormal;
bool Hit;
Shape* Target;
static RaycastResult NoHit() { return {Vector3::NaN, Vector3::NaN, false, nullptr};}
};
// A ray in 3D space is a line that starts from an origin point and extends to infinity in one direction
class Ray
{
public:
// The position of this ray.
Vector3 Origin;
// The normalized direction vector of this ray.
// @note: For proper functionality, this direction vector needs to always be normalized
Vector3 Direction;
Ray() {}
Ray(const Vector3& pos, const Vector3& dir);
//explicit Ray(const Line& line);
explicit Ray(const LineSegment& lineSegment);
bool IsFinite() const;
Vector3 GetPoint(float distance) const;
RaycastResult Cast(const Triangle& target, float maxDistance = 99999999);
RaycastResult Cast(const Plane& target, float maxDistance = 99999999);
RaycastResult Cast(const AABB& target, float maxDistance = 99999999);
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter3/raycast_sphere.html
RaycastResult Cast(const Sphere& target, float maxDistance = 99999999);
RaycastResult Cast(const OBB& target, float maxDistance = 99999999);
RaycastResult Cast(const Capsule& target, float maxDistance = 99999999);
RaycastResult Cast(const Frustum& target, float maxDistance = 99999999);
RaycastResult Cast(const TriangleMesh& target, float maxDistance = 9999999);
// Returns a RaycastResult structure containing the first object the ray collides with,
// the surface intersection point,
// and the surface normal at the point of intersection.
RaycastResult Cast(std::vector<Shape> shapes, float maxDistance = 99999999);
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
Vector3 ClosestPoint(const LineSegment&, float &d, float &d2) const;
Vector3 ClosestPoint(const Vector3 &targetPoint, float &d) const;
};
}

View File

@@ -0,0 +1,26 @@
#pragma once
namespace J3ML::Geometry
{
class GeometricPrimitive
{
public:
protected:
private:
};
class Shape
{
public:
protected:
private:
};
class Shape2D
{
public:
protected:
private:
};
}

View File

@@ -0,0 +1,84 @@
#pragma once
#include <J3ML/Geometry.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Shape.h>
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Matrix3x3;
using J3ML::LinearAlgebra::Matrix4x4;
// A mathematical representation of a 3-dimensional sphere
class Sphere : public Shape
{
public:
Vector3 Position;
float Radius;
public:
Sphere() {}
Sphere(const Vector3& pos, float radius) : Position(pos), Radius(radius) {}
/// Quickly returns an arbitrary point inside this Sphere. Used in GJK intersection test.
Vector3 AnyPointFast() const { return Position; }
/// Computes the extreme point of this Sphere in the given direction.
/** An extreme point is a farthest point of this Sphere in the given direction. For
a Sphere, this point is unique.
@param direction The direction vector of the direction to find the extreme point. This vector may
be unnormalized, but may not be null.
@return The extreme point of this Sphere in the given direction. */
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
void Translate(const Vector3& offset)
{
Position = Position + offset;
}
void Transform(const Matrix3x3& transform)
{
Position = transform * Position;
}
void Transform(const Matrix4x4& transform)
{
Position = transform * Position;
}
inline float Cube(float inp) const
{
return inp*inp*inp;
}
float Volume() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
float SurfaceArea() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
bool IsFinite() const
{
return Position.IsFinite() && std::isfinite(Radius);
}
bool IsDegenerate()
{
return !(Radius > 0.f) || !Position.IsFinite();
}
bool Contains(const Vector3& point) const
{
return Position.DistanceSquared(point) <= Radius*Radius;
}
bool Contains(const Vector3& point, float epsilon) const
{
return Position.DistanceSquared(point) <= Radius*Radius + epsilon;
}
bool Contains(const LineSegment& lineseg) const;
TriangleMesh GenerateUVSphere() const {}
TriangleMesh GenerateIcososphere() const {}
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
};
}

View File

@@ -0,0 +1,117 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <J3ML/LinearAlgebra.h>
#include <cfloat>
namespace J3ML::Geometry
{
class Triangle
{
public:
Vector3 V0;
Vector3 V1;
Vector3 V2;
public:
float DistanceSq(const Vector3 &point) const;
bool Intersects(const AABB& aabb) const;
bool Intersects(const Capsule& capsule) const;
AABB BoundingAABB() const;
/// Tests if the given object is fully contained inside this triangle.
/** @param triangleThickness An epsilon threshold value to use for this test. triangleThicknessSq is the squared version of this parameter.
This specifies the maximum distance the given object can lie from the plane defined by this triangle.
@see Distance(), Intersects(), ClosestPoint().
@todo Add Triangle::Contains(Circle) and Triangle::Contains(Disc). */
bool Contains(const Vector3& point, float triangleThicknessSq = 1e-5f) const;
bool Contains(const LineSegment& lineSeg, float triangleThickness = 1e-3f) const;
bool Contains(const Triangle& triangle, float triangleThickness = 1e-3f) const;
void ProjectToAxis(const Vector3 &axis, float &dMin, float &dMax) const;
/// Quickly returns an arbitrary point inside this Triangle. Used in GJK intersection test.
inline Vector3 AnyPointFast() const { return V0; }
/// Computes an extreme point of this Triangle in the given direction.
/** An extreme point is a farthest point of this Triangle in the given direction. Given a direction,
this point is not necessarily unique.
@param direction The direction vector of the direction to find the extreme point. This vector may
be unnormalized, but may not be null.
@return An extreme point of this Triangle in the given direction. The returned point is always a
vertex of this Triangle.
@see Vertex(). */
Vector3 ExtremePoint(const Vector3 &direction) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
static float IntersectLineTri(const Vector3 &linePos, const Vector3 &lineDir, const Vector3 &v0, const Vector3 &v1,
const Vector3 &v2, float &u, float &v);
/// Computes the closest point on the edge of this triangle to the given object.
/** @param outU [out] If specified, receives the barycentric U coordinate of the returned point (in the UV convention).
This pointer may be null.
@param outV [out] If specified, receives the barycentric V coordinate of the returned point (in the UV convention).
This pointer may be null.
@param outD [out] If specified, receives the distance along the line of the closest point on the line to the edge of this triangle.
@return The closest point on the edge of this triangle to the given object.
@todo Add ClosestPointToTriangleEdge(Point/Ray/Triangle/Plane/Polygon/Circle/Disk/AABB/OBB/Sphere/Capsule/Frustum/Polyhedron).
@see Distance(), Contains(), Intersects(), ClosestPointToTriangleEdge(), Line::GetPoint. */
Vector3 ClosestPointToTriangleEdge(const Line &line, float *outU, float *outV, float *outD) const;
Vector3 ClosestPointToTriangleEdge(const LineSegment &lineSegment, float *outU, float *outV, float *outD) const;
Vector3 ClosestPoint(const LineSegment &lineSegment, Vector3 *otherPt = 0) const;
/// Returns the point at the given barycentric coordinates.
/** This function computes the vector space point at the given barycentric coordinates.
@param uvw The barycentric UVW coordinate triplet. The condition u+v+w == 1 should hold for the input coordinate.
If 0 <= u,v,w <= 1, the returned point lies inside this triangle.
@return u*a + v*b + w*c. */
Vector3 Point(const Vector3 &uvw) const;
Vector3 Point(float u, float v, float w) const;
/** These functions are an alternate form of Point(u,v,w) for the case when the barycentric coordinates are
represented as a (u,v) pair and not as a (u,v,w) triplet. This function is provided for convenience
and effectively just computes Point(1-u-v, u, v).
@param uv The barycentric UV coordinates. If 0 <= u,v <= 1 and u+v <= 1, then the returned point lies inside
this triangle.
@return a + (b-a)*u + (c-a)*v.
@see BarycentricUV(), BarycentricUVW(), BarycentricInsideTriangle(). */
Vector3 Point(const Vector2 &uv) const;
Vector3 Point(float u, float v) const;
/// Expresses the given point in barycentric (u,v,w) coordinates.
/** @note There are two different conventions for representing barycentric coordinates. One uses
a (u,v,w) triplet with the equation pt == u*a + v*b + w*c, and the other uses a (u,v) pair
with the equation pt == a + u*(b-a) + v*(c-a). These two are equivalent. Use the mappings
(u,v) -> (1-u-v, u, v) and (u,v,w)->(v,w) to convert between these two representations.
@param point The point of the vector space to express in barycentric coordinates. This point should
lie in the plane formed by this triangle.
@return The factors (u,v,w) that satisfy the weighted sum equation point == u*a + v*b + w*c.
@see BarycentricUV(), BarycentricInsideTriangle(), Point(), http://mathworld.wolfram.com/BarycentricCoordinates.html */
Vector3 BarycentricUVW(const Vector3 &point) const;
/// Expresses the given point in barycentric (u,v) coordinates.
/** @note There are two different conventions for representing barycentric coordinates. One uses
a (u,v,w) triplet with the equation pt == u*a + v*b + w*c, and the other uses a (u,v) pair
with the equation pt == a + u*(b-a) + v*(c-a). These two are equivalent. Use the mappings
(u,v) -> (1-u-v, u, v) and (u,v,w)->(v,w) to convert between these two representations.
@param point The point to express in barycentric coordinates. This point should lie in the plane
formed by this triangle.
@return The factors (u,v) that satisfy the weighted sum equation point == a + u*(b-a) + v*(c-a).
@see BarycentricUVW(), BarycentricInsideTriangle(), Point(). */
Vector2 BarycentricUV(const Vector3 &point) const;
Vector3 ClosestPoint(const Vector3 &p) const;
Plane PlaneCCW() const;
Plane PlaneCW() const;
Vector3 Vertex(int i) const;
LineSegment Edge(int i) const;
};
}

View File

@@ -0,0 +1,9 @@
#pragma once
namespace J3ML::Geometry
{
class Triangle2D {
public:
};
}

View File

@@ -0,0 +1,9 @@
#pragma once
namespace J3ML::Geometry
{
class TriangleMesh
{
};
}

242
include/J3ML/J3ML.h Normal file
View File

@@ -0,0 +1,242 @@
#pragma once
//
// Created by josh on 12/25/2023.
//
#include <cstdint>
#include <cmath>
#include <stdfloat>
#include <string>
#include <cassert>
namespace J3ML::SizedIntegralTypes
{
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
using s8 = int8_t;
using s16 = int16_t;
using s32 = int32_t;
using s64 = int64_t;
using s128 = __int128_t;
}
namespace J3ML::SizedFloatTypes
{
using f32 = float;
using f64 = double;
using f128 = long double;
}
using namespace J3ML::SizedIntegralTypes;
using namespace J3ML::SizedFloatTypes;
namespace J3ML::Math
{
bool EqualAbs(float a, float b, float epsilon = 1e-3f);
float RecipFast(float x);
// Coming soon: Units Namespace
// For Dimensional Analysis
/*
namespace Units
{
struct Unit {};
struct Meters : public Unit { };
struct ImperialInches : public Unit {};
struct Time : public Unit {};
struct Grams : public Unit {};
struct MetersPerSecond : public Unit {};
template <typename TUnit>
struct Quantity
{
public:
float Value;
};
struct Mass : public Quantity<Grams> {};
struct Length : public Quantity<Meters> { };
struct Velocity : public Quantity<MetersPerSecond>{ };
class MetrixPrefix
{
public:
std::string Prefix;
std::string Symbol;
int Power;
float InverseMultiply(float input) const
{
return std::pow(input, -Power);
}
float Multiply(float input) const
{
return std::pow(input, Power);
}
};
namespace Prefixes
{
static constexpr MetrixPrefix Tera {"tera", "T", 12};
static constexpr MetrixPrefix Giga {"giga", "G", 9};
static constexpr MetrixPrefix Mega {"mega", "M", 6};
static constexpr MetrixPrefix Kilo {"kilo", "k", 3};
static constexpr MetrixPrefix Hecto {"hecto", "h", 2};
static constexpr MetrixPrefix Deca {"deca", "da", 1};
static constexpr MetrixPrefix None {"", "", 0};
static constexpr MetrixPrefix Deci {"", "", 0};
static constexpr MetrixPrefix Centi {"", "", 0};
static constexpr MetrixPrefix Milli {"", "", 0};
static constexpr MetrixPrefix Micro {"", "", 0};
static constexpr MetrixPrefix Nano {"", "", 0};
static constexpr MetrixPrefix Pico {"", "", 0};
}
Length operator ""_meters(long double value)
{
return {(float)value};
}
Length operator ""_m(long double value)
{
return {(float)value};
}
constexpr Length operator ""_kilometers(long double value)
{
return Length {(float)value};
}
Length operator ""_km(long double value)
{
return {(float)value};
}
Length operator ""_centimeters(long double value)
{
return {(float)value};
}
Length operator ""_cm(long double value)
{
return {(float)value};
}
Length operator ""_millimeters(long double value)
{
return {(float)value};
}
Length operator ""_mm(long double value)
{
return {(float)value};
}
Velocity operator ""_mps(long double value)
{
return {(float)value};
}
Velocity operator ""_meters_per_second(long double value)
{
return {(float)value};
}
Velocity operator ""_kmps(long double value)
{
return {(float)value};
}
}*/
#pragma region Constants
static const float Pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679f;
static const float RecipSqrt2Pi = 0.3989422804014326779399460599343818684758586311649346576659258296706579258993018385012523339073069364f;
static const float GoldenRatio = 1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375f;
#pragma endregion
#pragma region Math Functions
inline float Radians(float degrees);
inline float Degrees(float radians);
struct NumberRange
{
float LowerBound;
float UpperBound;
};
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);
/// Linearly interpolates from a to b, under the modulus mod.
/// This function takes evaluates a and b in the range [0, mod] and takes the shorter path to reach from a to b.
inline float LerpMod(float a, float b, float mod, float t);
/// Computes the lerp factor a and b have to be Lerp()ed to get x.
inline float InverseLerp(float a, float b, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509665(v=VS.85).aspx
inline float Step(float y, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509658(v=vs.85).aspx
inline float Ramp(float min, float max, float x);
inline float PingPongMod(float x, float mod);
inline float Sqrt(float x);
inline float FastSqrt(float x);
/// Returns 1/Sqrt(x). (The reciprocal of the square root of x)
inline float RSqrt(float x);
inline float FastRSqrt(float x);
#pragma endregion
namespace BitTwiddling
{
/// Parses a string of form "011101010" to a u32
u32 BinaryStringToValue(const char* s);
/// Returns the number of 1's set in the given value.
inline int CountBitsSet(u32 value);
}
namespace Interp
{
inline float SmoothStart(float t);
}
struct Rotation
{
public:
Rotation();
Rotation(float value);
float valueInRadians;
float ValueInRadians() const;
float ValueInDegrees() const;
Rotation operator+(const Rotation& rhs);
};
Rotation operator ""_rad(long double rads);
Rotation operator ""_radians(long double rads);
Rotation operator ""_deg(long double rads);
Rotation operator ""_degrees(long double rads);
}

View File

@@ -0,0 +1,30 @@
//// Dawsh Linear Algebra Library - Everything you need for 3D math
/// @file LinearAlgebra.h
/// @description Includes all LinearAlgebra classes and functions
/// @author Josh O'Leary, William Tomasine II
/// @copyright 2024 Redacted Software
/// @license Unlicense - Public Domain
/// @revision 1.3
/// @edited 2024-02-26
#pragma once
// TODO: Enforce Style Consistency (Function Names use MicroSoft Case)
// TODO: Implement Templated Linear Algebra
// Library Code //
#include "J3ML/LinearAlgebra/Vector2.h"
#include "J3ML/LinearAlgebra/Vector3.h"
#include "J3ML/LinearAlgebra/Vector4.h"
#include "J3ML/LinearAlgebra/Quaternion.h"
#include "J3ML/LinearAlgebra/AxisAngle.h"
#include "J3ML/LinearAlgebra/EulerAngle.h"
#include "J3ML/LinearAlgebra/Matrix2x2.h"
#include "J3ML/LinearAlgebra/Matrix3x3.h"
#include "J3ML/LinearAlgebra/Matrix4x4.h"
#include "J3ML/LinearAlgebra/Transform2D.h"
#include "J3ML/LinearAlgebra/CoordinateFrame.h"
using namespace J3ML::LinearAlgebra;

View File

@@ -0,0 +1,22 @@
#pragma once
namespace J3ML::LinearAlgebra {
class Angle2D {
public:
float x;
float y;
Angle2D(Math::Rotation rads);
Angle2D(float X, float Y)
{
x = X;
y = Y;
}
bool operator==(const Angle2D& rhs) const {
return (this->x==rhs.x && this->y==rhs.y);
}
};
}

View File

@@ -0,0 +1,26 @@
#pragma once
#include <J3ML/LinearAlgebra/EulerAngle.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra
{
/// Transitional datatype, not useful for internal representation of rotation
/// But has uses for conversion and manipulation.
class AxisAngle {
Vector3 axis;
float angle;
public:
AxisAngle();
AxisAngle(const Vector3 &axis, float angle);
EulerAngle ToEulerAngleXYZ() const;
Quaternion ToQuaternion() const;
static AxisAngle FromEulerAngleXYZ(const EulerAngle&);
};
}

View File

@@ -0,0 +1,28 @@
#pragma once
// Forward Declarations for classes that include each other
namespace J3ML::LinearAlgebra
{
class Vector2; // A type representing a position in a 2-dimensional coordinate space.
class Vector3; // A type representing a position in a 3-dimensional coordinate space.
class Vector4; // A type representing a position in a 4-dimensional coordinate space.
class Angle2D; // Uses x,y components to represent a 2D rotation.
class EulerAngle; // Uses pitch,yaw,roll components to represent a 3D orientation.
class AxisAngle; //
class CoordinateFrame; //
class Matrix2x2;
class Matrix3x3;
class Matrix4x4;
class Transform2D;
class Transform3D;
class Quaternion;
using Position = Vector3;
}
// Methods required by LinearAlgebra types
namespace J3ML::LinearAlgebra
{
}

View File

@@ -0,0 +1,17 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra
{
/// The CFrame is fundamentally 4 vectors (position, forward, right, up vector)
class CoordinateFrame
{
public:
Vector3 Position;
Vector3 Front;
Vector3 Right;
Vector3 Up;
};
}

View File

@@ -0,0 +1,50 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
namespace J3ML::LinearAlgebra {
class AxisAngle;
// Essential Reading:
// http://www.essentialmath.com/GDC2012/GDC2012_JMV_Rotations.pdf
class EulerAngle {
public:
EulerAngle();
EulerAngle(float pitch, float yaw, float roll);
EulerAngle(const Vector3& vec) : pitch(vec.x), yaw(vec.y), roll(vec.z) {}
AxisAngle ToAxisAngle() const;
explicit EulerAngle(const Quaternion& orientation);
explicit EulerAngle(const AxisAngle& orientation);
/// TODO: Implement separate upper and lower bounds
/// Preserves internal value of euler angles, normalizes and clamps the output.
/// This does not solve gimbal lock!!!
float GetPitch(float pitch_limit) const;
float GetYaw(float yaw_limit) const;
float GetRoll(float roll_limit) const;
bool operator==(const EulerAngle& a) const;
void clamp();
// TODO: Euler Angles do not represent a vector, length doesn't apply, nor is this information meaningful for this data type.
// If you need a meaningful representation of length in 3d space, use a vector!!
[[nodiscard]] float length() const {
return 0;
}
// TODO: Implement
Vector3 unitVector() const;
EulerAngle movementAngle() const;
public:
float pitch;
float yaw;
float roll;
};
}

View File

@@ -0,0 +1,66 @@
#pragma once
#include <cstddef>
#include <cstdlib>
#include <algorithm>
#include "Vector.h"
namespace J3ML::LinearAlgebra
{
template <uint ROWS, uint COLS, typename T>
class Matrix
{
static constexpr uint Diag = std::min(ROWS, COLS);
using RowVector = Vector<ROWS, T>;
using ColVector = Vector<COLS, T>;
using DiagVector = Vector<Diag, T>;
enum { Rows = ROWS };
enum { Cols = COLS };
void AssertRowSize(uint rows)
{
assert(rows < Rows && "");
}
void AssertColumnSize(uint cols)
{
assert(cols < Cols && "");
}
RowVector GetRow(uint index) const;
ColVector GetColumn(uint index) const;
void SetRow(uint index, RowVector);
void SetColumn(uint index, ColVector);
RowVector &Row(uint index) const;
ColVector &Column(uint index) const;
const T At(uint row, uint col) const
{
AssertRowSize(row);
AssertColumnSize(col);
return elems[row][col];
}
T &At(uint row, uint col)
{
AssertRowSize(row);
AssertColumnSize(col);
return elems[row][col];
}
float* ptr();
const float* ptr() const;
float operator[](uint index) const;
float& operator[](uint index);
private:
T elems[ROWS][COLS];
};
}

View File

@@ -0,0 +1,44 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
namespace J3ML::LinearAlgebra {
class Matrix2x2 {
public:
enum { Rows = 3 };
enum { Cols = 3 };
static const Matrix2x2 Zero;
static const Matrix2x2 Identity;
static const Matrix2x2 NaN;
Matrix2x2() {}
Matrix2x2(float val);
Matrix2x2(float m00, float m01, float m10, float m11);
Matrix2x2(const Vector2& r1, const Vector2& r2);
explicit Matrix2x2(const float *data);
Vector2 GetRow(int index) const;
Vector2 GetColumn(int index) const;
void SetRow(int i, const Vector2& row);
void SetColumn(int i, const Vector2& col);
void SetAt(int x, int y, float value);
float At(int x, int y) const;
float &At(int x, int y);
float Determinant() const;
Matrix2x2 Inverse() const;
Matrix2x2 Transpose() const;
Vector2 Transform(const Vector2& rhs) const;
Vector2 operator * (const Vector2& rhs) const;
Matrix2x2 operator * (const Matrix2x2 &rhs) const;
protected:
float elems[2][2];
};
}

View File

@@ -0,0 +1,160 @@
#pragma once
#include <J3ML/LinearAlgebra/Common.h>
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
class Quaternion;
/// A 3-by-3 matrix for linear transformations of 3D geometry.
/* This can represent any kind of linear transformations of 3D geometry, which include
* rotation, scale, shear, mirroring, and orthographic projection.
* A 3x3 matrix cannot represent translation, which requires a 3x4, or perspective projection (4x4).
* The elements of this matrix are
* m_00, m_01, m_02
* m_10, m_11, m_12
* m_20, m_21, m_22
*
* The element m_yx is the value on the row y and column x.
* You can access m_yx using the double-bracket notation m[y][x], or using the member function At.
*
* @note The member functions in this class use the convention that transforms are applied to
* vectors in the form M * v. This means that "Matrix3x3 M, M1, M2; M = M1 * M2;" gives a transformation M
* that applies M2 first, followed by M1 second
*/
class Matrix3x3 {
public:
enum { Rows = 3 };
enum { Cols = 3 };
static const Matrix3x3 Zero;
static const Matrix3x3 Identity;
static const Matrix3x3 NaN;
Matrix3x3() {}
Matrix3x3(float val);
Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22);
Matrix3x3(const Vector3& r1, const Vector3& r2, const Vector3& r3);
explicit Matrix3x3(const Quaternion& orientation);
explicit Matrix3x3(const float *data);
static Matrix3x3 RotateX(float radians);
static Matrix3x3 RotateY(float radians);
static Matrix3x3 RotateZ(float radians);
Vector3 GetRow(int index) const;
Vector3 GetColumn(int index) const;
Vector3 GetRow3(int index) const;
Vector3 GetColumn3(int index) const;
float &At(int row, int col);
float At(int x, int y) const;
void SetRotatePart(const Vector3& a, float angle);
/// Creates a new M3x3 that rotates about the given axis by the given angle
static Matrix3x3 RotateAxisAngle(const Vector3& axis, float angleRadians);
// TODO: Implement
static Matrix3x3 RotateFromTo(const Vector3& source, const Vector3& direction);
void SetRow(int i, const Vector3 &vector3);
void SetColumn(int i, const Vector3& vector);
void SetAt(int x, int y, float value);
void Orthonormalize(int c0, int c1, int c2);
static Matrix3x3 LookAt(const Vector3& forward, const Vector3& target, const Vector3& localUp, const Vector3& worldUp);
static Matrix3x3 FromQuat(const Quaternion& orientation);
Quaternion ToQuat() const;
/// Creates a new Matrix3x3 as a combination of rotation and scale.
// This function creates a new matrix M in the form M = R * S
// where R is a rotation matrix and S is a scale matrix.
// Transforming a vector v using this matrix computes the vector
// v' == M * v == R*S*v == (R * (S * v)) which means the scale operation
// is applied to the vector first, followed by rotation, and finally translation
static Matrix3x3 FromRS(const Quaternion& rotate, const Vector3& scale);
static Matrix3x3 FromRS(const Matrix3x3 &rotate, const Vector3& scale);
/// Creates a new transformation matrix that scales by the given factors.
// This matrix scales with respect to origin.
static Matrix3x3 FromScale(float sx, float sy, float sz);
static Matrix3x3 FromScale(const Vector3& scale);
/// Returns the main diagonal.
Vector3 Diagonal() const;
/// Returns the local +X/+Y/+Z axis in world space.
/// This is the same as transforming the vector{1,0,0} by this matrix.
Vector3 WorldX() const;
/// Returns the local +Y axis in world space.
/// This is the same as transforming the vector{0,1,0} by this matrix.
Vector3 WorldY() const;
/// Returns the local +Z axis in world space.
/// This is the same as transforming the vector{0,0,1} by this matrix.
Vector3 WorldZ() const;
/// Computes the determinant of this matrix.
// If the determinant is nonzero, this matrix is invertible.
// If the determinant is negative, this matrix performs reflection about some axis.
// From http://msdn.microsoft.com/en-us/library/bb204853(VS.85).aspx :
// "If the determinant is positive, the basis is said to be "positively" oriented (or right-handed).
// If the determinant is negative, the basis is said to be "negatively" oriented (or left-handed)."
// @note This function computes 9 LOADs, 9 MULs and 5 ADDs. */
float Determinant() const;
// Returns an inverted copy of this matrix. This
Matrix3x3 Inverse() const;
// Returns a transposed copy of this matrix.
Matrix3x3 Transpose() const;
// Transforms the given vectors by this matrix M, i.e. returns M * (x,y,z)
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(const Vector3& rhs) const;
Matrix3x3 ScaleBy(const Vector3& rhs);
Vector3 GetScale() const;
Vector3 operator[](int row) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Matrix3x3 operator * (const Matrix3x3& rhs) const;
Matrix4x4 operator * (const Matrix4x4& rhs) const;
Matrix3x3 Mul(const Matrix3x3& rhs) const;
Matrix4x4 Mul(const Matrix4x4& rhs) const;
Vector2 Mul(const Vector2& rhs) const;
Vector3 Mul(const Vector3& rhs) const;
Vector4 Mul(const Vector4& rhs) const;
Quaternion Mul(const Quaternion& rhs) const;
// Returns true if the column vectors of this matrix are all perpendicular to each other.
bool IsColOrthogonal(float epsilon = 1e-3f) const;
// Returns true if the row vectors of this matrix are all perpendicular to each other.
bool IsRowOrthogonal(float epsilon = 1e-3f) const;
bool HasUniformScale(float epsilon = 1e-3f) const;
Vector3 ExtractScale() const {
return {GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length()};
}
protected:
float elems[3][3];
};
}

View File

@@ -0,0 +1,285 @@
#pragma once
#include <J3ML/LinearAlgebra/Common.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <algorithm>
namespace J3ML::LinearAlgebra {
/// A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
/* This matrix can represent the most generic form of transformations for 3D objects,
* including perspective projections, which a 4-by-3 cannot store,
* and translations, which a 3-by-3 cannot represent.
* The elements of this matrix are
* m_00, m_01, m_02, m_03
* m_10, m_11, m_12, m_13
* m_20, m_21, m_22, m_23,
* m_30, m_31, m_32, m_33
*
* The element m_yx is the value on the row y and column x.
* You can access m_yx using the double-bracket notation m[y][x]
*/
class Matrix4x4 {
public:
// TODO: Implement assertions to ensure matrix bounds are not violated!
enum { Rows = 4 };
enum { Cols = 4 };
/// A constant matrix that has zeroes in all its entries
static const Matrix4x4 Zero;
/// A constant matrix that is the identity.
static const Matrix4x4 Identity;
/// A compile-time constant float4x4 which has NaN in each element.
/// For this constant, each element has the value of quet NaN, or Not-A-Number.
/// Never compare a matrix to this value. Due to how IEEE floats work, "nan == nan" returns false!
static const Matrix4x4 NaN;
/// Creates a new float4x4 with uninitialized member values.
Matrix4x4() {}
Matrix4x4(float val);
/// Constructs this float4x4 to represent the same transformation as the given float3x3.
/** This function expands the last row and column of this matrix with the elements from the identity matrix. */
Matrix4x4(const Matrix3x3&);
explicit Matrix4x4(const float* data);
/// Constructs a new float4x4 by explicitly specifying all the matrix elements.
/// The elements are specified in row-major format, i.e. the first row first followed by the second and third row.
/// E.g. The element _10 denotes the scalar at second (index 1) row, first (index 0) column.
Matrix4x4(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33);
/// Constructs the matrix by explicitly specifying the four column vectors.
/** @param col0 The first column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local X axis.
@param col1 The second column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local Y axis.
@param col2 The third column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
direction of the local Z axis.
@param col3 The fourth column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
position of the local space pivot. */
Matrix4x4(const Vector4& r1, const Vector4& r2, const Vector4& r3, const Vector4& r4);
explicit Matrix4x4(const Quaternion& orientation);
/// Constructs this float4x4 from the given quaternion and translation.
/// Logically, the translation occurs after the rotation has been performed.
Matrix4x4(const Quaternion& orientation, const Vector3 &translation);
/// Creates a LookAt matrix from a look-at direction vector.
/** A LookAt matrix is a rotation matrix that orients an object to face towards a specified target direction.
@param localForward Specifies the forward direction in the local space of the object. This is the direction
the model is facing at in its own local/object space, often +X (1,0,0), +Y (0,1,0) or +Z (0,0,1). The
vector to pass in here depends on the conventions you or your modeling software is using, and it is best
pick one convention for all your objects, and be consistent.
This input parameter must be a normalized vector.
@param targetDirection Specifies the desired world space direction the object should look at. This function
will compute a rotation matrix which will rotate the localForward vector to orient towards this targetDirection
vector. This input parameter must be a normalized vector.
@param localUp Specifies the up direction in the local space of the object. This is the up direction the model
was authored in, often +Y (0,1,0) or +Z (0,0,1). The vector to pass in here depends on the conventions you
or your modeling software is using, and it is best to pick one convention for all your objects, and be
consistent. This input parameter must be a normalized vector. This vector must be perpendicular to the
vector localForward, i.e. localForward.Dot(localUp) == 0.
@param worldUp Specifies the global up direction of the scene in world space. Simply rotating one vector to
coincide with another (localForward->targetDirection) would cause the up direction of the resulting
orientation to drift (e.g. the model could be looking at its target its head slanted sideways). To keep
the up direction straight, this function orients the localUp direction of the model to point towards the
specified worldUp direction (as closely as possible). The worldUp and targetDirection vectors cannot be
collinear, but they do not need to be perpendicular either.
@return A matrix that maps the given local space forward direction vector to point towards the given target
direction, and the given local up direction towards the given target world up direction. The returned
matrix M is orthonormal with a determinant of +1. For the matrix M it holds that
M * localForward = targetDirection, and M * localUp lies in the plane spanned by the vectors targetDirection
and worldUp.
@note The position of (the translation performed by) the resulting matrix will be set to (0,0,0), i.e. the object
will be placed to origin. Call SetTranslatePart() on the resulting matrix to set the position of the model.
@see RotateFromTo(). */
static Matrix4x4 LookAt(const Vector3& localFwd, const Vector3& targetDir, const Vector3& localUp, const Vector3& worldUp);
/// Returns the translation part.
/** The translation part is stored in the fourth column of this matrix.
This is equivalent to decomposing this matrix in the form M = T * M', i.e. this translation is applied last,
after applying rotation and scale. If this matrix represents a local->world space transformation for an object,
then this gives the world space position of the object.
@note This function assumes that this matrix does not contain projection (the fourth row of this matrix is [0 0 0 1]). */
Vector3 GetTranslatePart() const;
/// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation).
Matrix3x3 GetRotatePart() const;
void SetTranslatePart(float translateX, float translateY, float translateZ);
void SetTranslatePart(const Vector3& offset);
void SetRotatePart(const Quaternion& q);
void Set3x3Part(const Matrix3x3& r);
void SetRow(int row, const Vector3& rowVector, float m_r3);
void SetRow(int row, const Vector4& rowVector);
void SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3);
void SetCol(int col, const Vector3& colVector, float m_c3);
void SetCol(int col, const Vector4& colVector);
void SetCol(int col, float m_c0, float m_c1, float m_c2, float m_c3);
void SetCol(int col, const float *data);
Vector4 GetRow(int index) const;
Vector4 GetColumn(int index) const;
Vector3 GetRow3(int index) const;
Vector3 GetColumn3(int index) const;
Vector4 Col(int i) const;
Vector4 Row(int i) const;
Vector4 Col3(int i) const;
Vector4 Row3(int i) const;
Vector3 GetScale() const
{
}
Matrix4x4 Scale(const Vector3&);
float &At(int row, int col);
float At(int x, int y) const;
template <typename T>
void Swap(T &a, T &b)
{
T temp = std::move(a);
a = std::move(b);
b = std::move(temp);
}
void SwapColumns(int col1, int col2);
/// Swaps two rows.
void SwapRows(int row1, int row2);
/// Swapsthe xyz-parts of two rows element-by-element
void SwapRows3(int row1, int row2);
void ScaleRow(int row, float scalar);
void ScaleRow3(int row, float scalar);
void ScaleColumn(int col, float scalar);
void ScaleColumn3(int col, float scalar);
/// Algorithm from Eric Lengyel's Mathematics for 3D Game Programming & Computer Graphics, 2nd Ed.
void Pivot();
/// Tests if this matrix does not contain any NaNs or infs.
/** @return Returns true if the entries of this float4x4 are all finite, and do not contain NaN or infs. */
bool IsFinite() const;
/// Tests if this matrix has an inverse.
/** @return Returns true if this matrix can be inverted, up to the given epsilon. */
bool IsInvertible(float epsilon = 1e-3f) const;
Vector4 Diagonal() const;
Vector3 Diagonal3() const;
/// Returns the local +X axis in world space.
/// This is the same as transforming the vector (1,0,0) by this matrix.
Vector3 WorldX() const;
/// Returns the local +Y axis in world space.
/// This is the same as transforming the vector (0,1,0) by this matrix.
Vector3 WorldY() const;
/// Returns the local +Z axis in world space.
/// This is the same as transforming the vector (0,0,1) by this matrix.
Vector3 WorldZ() const;
/// Accesses this structure as a float array.
/// @return A pointer to the upper-left element. The data is contiguous in memory.
/// ptr[0] gives the element [0][0], ptr[1] is [0][1], ptr[2] is [0][2].
/// ptr[4] == [1][0], ptr[5] == [1][1], ..., and finally, ptr[15] == [3][3].
float *ptr() { return &elems[0][0]; }
const float *ptr() const { return &elems[0][0]; }
float Determinant3x3() const;
/// Computes the determinant of this matrix.
// If the determinant is nonzero, this matrix is invertible.
float Determinant() const;
#define SKIPNUM(val, skip) (val >= skip ? (val+1) : val)
float Minor(int i, int j) const;
Matrix4x4 Inverse() const;
Matrix4x4 Transpose() const;
Vector2 Transform(float tx, float ty) const;
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(float tx, float ty, float tz) const;
Vector3 Transform(const Vector3& rhs) const;
Vector4 Transform(float tx, float ty, float tz, float tw) const;
Vector4 Transform(const Vector4& rhs) const;
Matrix4x4 Translate(const Vector3& rhs) const;
static Matrix4x4 FromTranslation(const Vector3& rhs);
static Matrix4x4 D3DOrthoProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DOrthoProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 OpenGLOrthoProjLH(float n, float f, float h, float v);
static Matrix4x4 OpenGLOrthoProjRH(float n, float f, float h, float v);
static Matrix4x4 OpenGLPerspProjLH(float n, float f, float h, float v);
static Matrix4x4 OpenGLPerspProjRH(float n, float f, float h, float v);
Vector4 operator[](int row);
Matrix4x4 operator-() const;
Matrix4x4 operator +(const Matrix4x4& rhs) const;
Matrix4x4 operator - (const Matrix4x4& rhs) const;
Matrix4x4 operator *(float scalar) const;
Matrix4x4 operator /(float scalar) const;
Vector4 operator[](int row) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
Vector2 Mul(const Vector2& rhs) const;
Vector3 Mul(const Vector3& rhs) const;
Vector4 Mul(const Vector4& rhs) const;
Matrix4x4 operator * (const Matrix3x3 &rhs) const;
Matrix4x4 operator +() const;
Matrix4x4 operator * (const Matrix4x4& rhs) const;
Matrix4x4 &operator = (const Matrix3x3& rhs);
Matrix4x4 &operator = (const Quaternion& rhs);
Matrix4x4 &operator = (const Matrix4x4& rhs) = default;
Vector3 ExtractScale() const;
bool HasUniformScale(float epsilon = 1e-3f) const;
bool IsColOrthogonal3(float epsilon = 1e-3f) const;
bool IsRowOrthogonal3(float epsilon = 1e-3f) const;
bool IsColOrthogonal(float epsilon = 1e-3f) const;
bool IsRowOrthogonal(float epsilon = 1e-3f) const;
/// Returns true if this matrix is seen to contain a "projective" part,
/// i.e. whether the last row of this matrix differs from [0 0 0 1]
bool ContainsProjection(float epsilon = 1e-3f) const;
void InverseOrthonormal();
protected:
float elems[4][4];
Vector3 TransformDir(float tx, float ty, float tz) const;
};
}

View File

@@ -0,0 +1,110 @@
#pragma once
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
//#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <cmath>
namespace J3ML::LinearAlgebra
{
class Matrix3x3;
class Quaternion : public Vector4 {
public:
Quaternion();
Quaternion(const Quaternion &rhs) = default;
explicit Quaternion(const Matrix3x3 &rotationMtrx);
explicit Quaternion(const Matrix4x4 &rotationMtrx);
// @note The input data is not normalized after construction, this has to be done manually.
Quaternion(float X, float Y, float Z, float W);
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween);
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween);
//void Inverse();
explicit Quaternion(Vector4 vector4);
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
Quaternion Inverse() const;
Quaternion Conjugate() const;
//void Normalize();
Vector3 GetWorldX() const;
Vector3 GetWorldY() const;
Vector3 GetWorldZ() const;
Vector3 GetAxis() const;
float GetAngle() const;
Matrix3x3 ToMatrix3x3() const;
Matrix4x4 ToMatrix4x4() const;
Matrix4x4 ToMatrix4x4(const Vector3 &translation) const;
Vector3 Transform(const Vector3& vec) const;
Vector3 Transform(float X, float Y, float Z) const;
// Note: We only transform the x,y,z components of 4D vectors, w is left untouched
Vector4 Transform(const Vector4& vec) const;
Vector4 Transform(float X, float Y, float Z, float W) const;
Quaternion GetInverse() const;
Quaternion Lerp(const Quaternion& b, float t) const;
Quaternion Slerp(const Quaternion& q2, float t) const;
Quaternion Normalize() const;
static Quaternion LookAt(const Vector3& position, const Vector3& direction, const Vector3& axisUp);
// TODO: Document (But do not override!) certain math functions that are the same for Vec4
// TODO: Double Check which operations need to be overriden for correct behavior!
// Multiplies two quaternions together.
// The product q1 * q2 returns a quaternion that concatenates the two orientation rotations.
// The rotation q2 is applied first before q1.
Quaternion operator * (const Quaternion& rhs) const;
Quaternion operator * (float scalar) const;
// Transforms the given vector by this Quaternion.
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
// Divides a quaternion by another. Divison "a / b" results in a quaternion that rotates the orientation b to coincide with orientation of
Quaternion operator / (const Quaternion& rhs) const;
Quaternion operator + (const Quaternion& rhs) const;
Quaternion operator + () const;
Quaternion operator - () const;
float Dot(const Quaternion &quaternion) const;
float Angle() const { return acos(w) * 2.f;}
float AngleBetween(const Quaternion& target) const;
AxisAngle ToAxisAngle() const;
};
}

View File

@@ -0,0 +1,40 @@
#pragma once
#include <J3ML/LinearAlgebra/Matrix3x3.h>
namespace J3ML::LinearAlgebra {
class Transform2D {
protected:
Matrix3x3 transformation;
public:
const static Transform2D Identity;
const static Transform2D FlipX;
const static Transform2D FlipY;
Transform2D(float rotation, const Vector2& pos);
Transform2D(float px, float py, float sx, float sy, float ox, float oy, float kx, float ky, float rotation)
{
transformation = Matrix3x3(px, py, rotation, sx, sy, ox, oy, kx, ky);
}
Transform2D(const Vector2& pos, const Vector2& scale, const Vector2& origin, const Vector2& skew, float rotation);
Transform2D(const Matrix3x3& transform);
Transform2D Translate(const Vector2& offset) const;
Transform2D Translate(float x, float y) const;
Transform2D Scale(float scale); // Perform Uniform Scale
Transform2D Scale(float x, float y); // Perform Nonunform Scale
Transform2D Scale(const Vector2& scales); // Perform Nonuniform Scale
Transform2D Rotate();
Vector2 Transform(const Vector2& input) const;
Transform2D Inverse() const;
Transform2D AffineInverse() const;
float Determinant() const;
Vector2 GetOrigin() const;
float GetRotation() const;
Vector2 GetScale() const;
float GetSkew() const;
Transform2D OrthoNormalize();
};
}

View File

@@ -0,0 +1,15 @@
#pragma once
#include <cstdlib>
namespace J3ML::LinearAlgebra
{
template <uint DIMS, typename T>
class Vector {
public:
enum { Dimensions = DIMS};
T elems[DIMS];
};
}

View File

@@ -0,0 +1,195 @@
#pragma clang diagnostic push
#pragma ide diagnostic ignored "modernize-use-nodiscard"
#pragma once
#include <J3ML/J3ML.h>
#include <cstddef>
namespace J3ML::LinearAlgebra {
using namespace J3ML;
/// A 2D (x, y) ordered pair.
class Vector2 {
public:
float x = 0;
float y = 0;
public:
enum {Dimensions = 2};
public:
/// Default Constructor - Initializes values to zero
Vector2();
/// Constructs a new Vector2 with the value (X, Y)
Vector2(float X, float Y);
/// Constructs this float2 from a C array, to the value (data[0], data[1]).
explicit Vector2(const float* data);
// Constructs a new Vector2 with the value {scalar, scalar}
explicit Vector2(float scalar);
Vector2(const Vector2& rhs); // Copy Constructor
//Vector2(Vector2&&) = default; // Move Constructor
static const Vector2 Zero;
static const Vector2 Up;
static const Vector2 Left;
static const Vector2 Down;
static const Vector2 Right;
static const Vector2 NaN;
static const Vector2 Infinity;
float GetX() const;
float GetY() const;
void SetX(float newX);
void SetY(float newY);
/// Casts this float2 to a C array.
/** This function does not allocate new memory or make a copy of this float2. This function simply
returns a C pointer view to this data structure. Use ptr()[0] to access the x component of this float2
and ptr()[1] to access the y component.
@note Since the returned pointer points to this class, do not dereference the pointer after this
float2 has been deleted. You should never store a copy of the returned pointer.
@note This function is provided for compatibility with other APIs which require raw C pointer access
to vectors. Avoid using this function in general, and instead always use the operator []
or the At() function to access the elements of this vector by index.
@return A pointer to the first float element of this class. The data is contiguous in memory.
@see operator [](), At(). */
float* ptr();
const float *ptr() const;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
const float At(std::size_t index) const;
float &At(std::size_t index);
Vector2 Abs() const;
bool IsWithinMarginOfError(const Vector2& rhs, float margin=0.001f) const;
bool IsNormalized(float epsilonSq = 1e-5f) const;
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsPerpendicular(const Vector2& other, float epsilonSq=1e-5f) const;
bool operator == (const Vector2& rhs) const;
bool operator != (const Vector2& rhs) const;
Vector2 Min(const Vector2& min) const;
static Vector2 Min(const Vector2& value, const Vector2& minimum);
Vector2 Max(const Vector2& max) const;
static Vector2 Max(const Vector2& value, const Vector2& maximum);
Vector2 Clamp(const Vector2& min, const Vector2& max) const;
static Vector2 Clamp(const Vector2& min, const Vector2& middle, const Vector2& max);
/// Returns the magnitude between the two vectors.
float Distance(const Vector2& to) const;
static float Distance(const Vector2& from, const Vector2& to);
float DistanceSq(const Vector2& to) const;
static float DistanceSq(const Vector2& from, const Vector2& to);
float MinElement() const;
float MaxElement() const;
float Length() const;
static float Length(const Vector2& of);
float LengthSquared() const;
static float LengthSquared(const Vector2& of);
/// Returns the length of the vector, which is sqrt(x^2 + y^2)
float Magnitude() const;
static float Magnitude(const Vector2& of);
bool IsFinite() const;
static bool IsFinite(const Vector2& v);
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
float Dot(const Vector2& rhs) const;
static float Dot(const Vector2& lhs, const Vector2& rhs);
/// Projects one vector onto another and returns the result. (IDK)
Vector2 Project(const Vector2& rhs) const;
/// @see Project
static Vector2 Project(const Vector2& lhs, const Vector2& rhs);
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
Vector2 Normalize() const;
static Vector2 Normalize(const Vector2& of);
/// Linearly interpolates between two points.
/// Interpolates between the points and b by the interpolant t.
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
Vector2 Lerp(const Vector2& rhs, float alpha) const;
/// @see Lerp
static Vector2 Lerp(const Vector2& lhs, const Vector2& rhs, float alpha);
/// Note: Input vectors MUST be normalized first!
float AngleBetween(const Vector2& rhs) const;
static float AngleBetween(const Vector2& lhs, const Vector2& rhs);
/// Adds two vectors.
Vector2 operator +(const Vector2& rhs) const;
Vector2 Add(const Vector2& rhs) const;
static Vector2 Add(const Vector2& lhs, const Vector2& rhs);
/// Subtracts two vectors.
Vector2 operator -(const Vector2& rhs) const;
Vector2 Sub(const Vector2& rhs) const;
static Vector2 Sub(const Vector2& lhs, const Vector2& rhs);
/// Multiplies this vector by a scalar value.
Vector2 operator *(float rhs) const;
Vector2 Mul(float scalar) const;
static Vector2 Mul(const Vector2& lhs, float rhs);
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector2 operator *(const Vector2& rhs) const
{
}
Vector2 Mul(const Vector2& v) const;
/// Divides this vector by a scalar.
Vector2 operator /(float rhs) const;
Vector2 Div(float scalar) const;
static Vector2 Div(const Vector2& lhs, float rhs);
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector2 Div(const Vector2& v) const;
/// Unary operator +
Vector2 operator +() const; // TODO: Implement
Vector2 operator -() const;
/// Assigns a vector to another
Vector2 &operator =(const Vector2 &rhs);
Vector2& operator+=(const Vector2& rhs);
Vector2& operator-=(const Vector2& rhs);
Vector2& operator*=(float scalar);
Vector2& operator/=(float scalar);
/// Tests if the triangle a->b->c is oriented counter-clockwise.
/** Returns true if the triangle a->b->c is oriented counter-clockwise, when viewed in the XY-plane
where x spans to the right and y spans up.
Another way to think of this is that this function returns true, if the point C lies to the left
of the directed line AB. */
static bool OrientedCCW(const Vector2 &, const Vector2 &, const Vector2 &);
};
static Vector2 operator*(float lhs, const Vector2 &rhs)
{
return rhs * lhs;
}
}
#pragma clang diagnostic pop

View File

@@ -0,0 +1,252 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <cstddef>
#include <cstdlib>
#include <J3ML/LinearAlgebra/Angle2D.h>
namespace J3ML::LinearAlgebra {
// A 3D (x, y, z) ordered pair.
class Vector3 {
public:
float x = 0;
float y = 0;
float z = 0;
public:
enum {Dimensions = 3};
public:
static const Vector3 Zero;
static const Vector3 Up;
static const Vector3 Down;
static const Vector3 Left;
static const Vector3 Right;
static const Vector3 Forward;
static const Vector3 Backward;
static const Vector3 NaN;
static const Vector3 Infinity;
static const Vector3 NegativeInfinity;
public:
/// The default constructor does not initialize any members of this class.
/** This means that the values of the members x, y and z are all undefined after creating a new Vector3 using
this default constructor. Remember to assign to them before use.
@see x, y, z. */
Vector3();
// Constructs a new Vector3 with the value (X, Y, Z)
Vector3(float X, float Y, float Z);
Vector3(const Vector2& XY, float Z);
Vector3(const Vector3& rhs); // Copy Constructor
Vector3(Vector3&&) = default; // Move Constructor
/// Constructs this float3 from a C array, to the value (data[0], data[1], data[2]).
/** @param data An array containing three elements for x, y and z. This pointer may not be null. */
explicit Vector3(const float* data);
/// Constructs a new Vector3 with the value (scalar, scalar, scalar).
explicit Vector3(float scalar);
/// Casts this float3 to a C array.
/** This function does not allocate new memory or make a copy of this Vector3. This function simply
returns a C pointer view to this data structure. Use ptr()[0] to access the x component of this float3,
ptr()[1] to access y, and ptr()[2] to access the z component of this Vector3.
@note Since the returned pointer points to this class, do not dereference the pointer after this
float3 has been deleted. You should never store a copy of the returned pointer.
@note This function is provided for compatibility with other APIs which require raw C pointer access
to vectors. Avoid using this function in general, and instead always use the operator [] or
the At() function to access the elements of this vector by index.
@return A pointer to the first float element of this class. The data is contiguous in memory.
@see operator [](), At(). */
float* ptr();
[[nodiscard]] const float *ptr() const { return &x;}
/// Accesses an element of this vector using array notation.
/** @param index The element to get. Pass in 0 for x, 1 for y and 2 for z.
@note If you have a non-const instance of this class, you can use this notation to set the elements of
this vector as well, e.g. vec[1] = 10.f; would set the y-component of this vector.
@see ptr(), At(). */
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
/// Accesses an element of this vector.
/** @param index The element to get. Pass in 0 for x, 1 for y, and 2 for z.
@note If you have a non-const instance of this class, you can use this notation to set the elements of
this vector as well, e.g. vec.At(1) = 10.f; would set the y-component of this vector.
@see ptr(), operator [](). */
float At(int index) const;
float &At(int index);
static void Orthonormalize(Vector3& a, Vector3& b);
Vector3 Abs() const;
static Vector3 Abs(const Vector3& rhs);
/// Returns the DirectionVector for a given angle.
static Vector3 Direction(const Vector3 &rhs) ;
static void Orthonormalize(Vector3& a, Vector3& b, Vector3& c);
bool AreOrthonormal(const Vector3& a, const Vector3& b, float epsilon);
Vector3 ProjectToNorm(const Vector3& direction) const;
float GetX() const;
float GetY() const;
float GetZ() const;
void SetX(float newX);
void SetY(float newY);
void SetZ(float newZ);
bool IsWithinMarginOfError(const Vector3& rhs, float margin=0.001f) const;
bool IsNormalized(float epsilonSq = 1e-5f) const;
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsPerpendicular(const Vector3& other, float epsilonSq=1e-5f) const;
bool operator == (const Vector3& rhs) const;
bool operator != (const Vector3& rhs) const;
bool IsFinite() const;
float MinElement() const;
static float MinElement(const Vector3& of);
// Normalizes this Vector3.
/** In the case of failure, this vector is set to (1, 0, 0), so calling this function will never result in an
unnormalized vector.
@note If this function fails to normalize the vector, no error message is printed, the vector is set to (1,0,0) and
an error code 0 is returned. This is different than the behavior of the Normalized() function, which prints an
error if normalization fails.
@note This function operates in-place.
@return The old length of this vector, or 0 if normalization failed.
@see Normalized(). */
float TryNormalize();
/// Computes a new normalized direction vector that is perpendicular to this vector and the specified hint vector.
/** If this vector points toward the hint vector, the vector hint2 is returned instead.
@see AnotherPerpendicular(), Cross(). */
Vector3 Perpendicular(const Vector3 &hint = Vector3(0,1,0), const Vector3 &hint2 = Vector3(0,0,1)) const;
Vector3 Min(const Vector3& min) const;
static Vector3 Min(const Vector3& a, const Vector3& b, const Vector3& c);
static Vector3 Min(const Vector3& lhs, const Vector3& rhs);
Vector3 Max(const Vector3& max) const;
static Vector3 Max(const Vector3& a, const Vector3& b, const Vector3& c);
static Vector3 Max(const Vector3& lhs, const Vector3& rhs);
Vector3 Clamp(const Vector3& min, const Vector3& max) const;
static Vector3 Clamp(const Vector3& min, const Vector3& input, const Vector3& max);
/// Returns the magnitude between the two vectors.
float Distance(const Vector3& to) const;
static float Distance(const Vector3& from, const Vector3& to);
//float Distance(const Ray&) const;
//float Distance(const LineSegment&) const;
//float Distance(const Plane&) const;
//float DIstance(const Triangle&) const;
float DistanceSquared(const Vector3& to) const;
// Function Alias for DistanceSquared
float DistanceSq(const Vector3& to) const { return DistanceSquared(to); }
static float DistanceSquared(const Vector3& from, const Vector3& to);
float Length() const;
static float Length(const Vector3& of);
float LengthSquared() const;
static float LengthSquared(const Vector3& of);
/// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
float Magnitude() const;
static float Magnitude(const Vector3& of);
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
float Dot(const Vector3& rhs) const;
static float Dot(const Vector3& lhs, const Vector3& rhs);
/// Projects one vector onto another and returns the result. (IDK)
Vector3 Project(const Vector3& rhs) const;
static Vector3 Project(const Vector3& lhs, const Vector3& rhs);
/// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
/// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
Vector3 Cross(const Vector3& rhs) const;
static Vector3 Cross(const Vector3& lhs, const Vector3& rhs);
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
Vector3 Normalize() const;
static Vector3 Normalize(const Vector3& targ);
/// Linearly interpolates between two points.
/// Interpolates between the points and b by the interpolant t.
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
Vector3 Lerp(const Vector3& goal, float alpha) const;
static Vector3 Lerp(const Vector3& lhs, const Vector3& rhs, float alpha);
/// Returns the angle between this vector and the specified vector, in radians.
/** @note This function takes into account that this vector or the other vector can be unnormalized, and normalizes the computations.
If you are computing the angle between two normalized vectors, it is better to use AngleBetweenNorm().
@see AngleBetweenNorm(). */
Angle2D AngleBetween(const Vector3& rhs) const;
static Angle2D AngleBetween(const Vector3& lhs, const Vector3& rhs);
/// Adds two vectors
Vector3 operator+(const Vector3& rhs) const;
Vector3 Add(const Vector3& rhs) const;
static Vector3 Add(const Vector3& lhs, const Vector3& rhs);
/// Adds the vector(s, s, s) to this vector
Vector3 Add(float s) const;
/// Subtracts two vectors
Vector3 operator-(const Vector3& rhs) const;
Vector3 Sub(const Vector3& rhs) const;
static Vector3 Sub(const Vector3& lhs, const Vector3& rhs);
/// Multiplies this vector by a scalar value
Vector3 operator*(float rhs) const;
Vector3 Mul(float scalar) const;
static Vector3 Mul(const Vector3& lhs, float rhs);
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector3 Mul(const Vector3& rhs) const;
/// Divides this vector by a scalar
Vector3 operator/(float rhs) const;
Vector3 Div(float scalar) const;
static Vector3 Div(const Vector3& lhs, float rhs);
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector3 Div(const Vector3& v) const;
/// Unary + operator
Vector3 operator+() const; // TODO: Implement
/// Unary - operator (Negation)
Vector3 operator-() const;
bool Equals(const Vector3& rhs, float epsilon = 1e-3f) const;
bool Equals(float _x, float _y, float _z, float epsilon = 1e-3f) const;
Vector3 &operator =(const Vector3& rhs);
Vector3& operator+=(const Vector3& rhs);
Vector3& operator-=(const Vector3& rhs);
Vector3& operator*=(float scalar);
Vector3& operator/=(float scalar);
void Set(float d, float d1, float d2);
};
static Vector3 operator*(float lhs, const Vector3& rhs)
{
return rhs * lhs;
}
}

View File

@@ -0,0 +1,134 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra {
class Vector4 {
public:
// Default Constructor
Vector4();
// Constructs a new Vector4 with x,y,z values from a Vector3
Vector4(const Vector3& xyz, float w = 0);
// Constructs a new Vector4 with the value (X, Y, Z, W)
Vector4(float X, float Y, float Z, float W);
Vector4(const Vector4& copy) = default;
Vector4(Vector4&& move) = default;
Vector4& operator=(const Vector4& rhs);
float* ptr()
{
return &x;
}
Vector3 XYZ() const
{
return {x, y, z};
}
float GetX() const { return x; }
float GetY() const { return y; }
float GetZ() const { return z; }
float GetW() const { return w; }
#if MUTABLE
void SetX(float newX) { x = newX;}
void SetY(float newY) { y = newY;}
void SetZ(float newZ) { z = newZ;}
void SetW(float newW) { w = newW;}
#endif
static const Vector4 Zero;
static const Vector4 NaN;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
bool IsWithinMarginOfError(const Vector4& rhs, float margin=0.0001f) const;
float LengthSqXYZ() const;
bool IsNormalized3(float epsilonSq = 1e-5f) const
{
return std::abs(LengthSqXYZ()-1.f) <= epsilonSq;
}
bool IsNormalized4(float epsilonSq = 1e-5f) const
{
return std::abs(LengthSquared()-1.f) <= epsilonSq;
}
bool IsNormalized(float epsilonSq = 1e-5f) const { return IsNormalized4(epsilonSq); }
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsFinite() const;
bool IsPerpendicular(const Vector4& other, float epsilonSq=1e-5f) const
{
float dot = Dot(other);
return dot*dot <= epsilonSq * LengthSquared() * other.LengthSquared();
}
bool IsPerpendicular3(const Vector4& other, float epsilonSq = 1e-5f) const
{
}
bool operator==(const Vector4& rhs) const;
bool operator!=(const Vector4& rhs) const;
bool Equals(const Vector4& rhs, float epsilon = 1e-3f) const;
bool Equals(float _x, float _y, float _z, float _w, float epsilon = 1e-3f) const;
Vector4 Min(const Vector4& min) const;
Vector4 Max(const Vector4& max) const;
Vector4 Clamp(const Vector4& min, const Vector4& max) const;
float Distance(const Vector4& to) const;
float Length() const;
float LengthSquared() const;
float Magnitude() const;
float Dot(const Vector4& rhs) const;
Vector4 Project(const Vector4& rhs) const;
// While it is feasable to compute a cross-product in four dimensions
// the cross product only has the orthogonality property in 3 and 7 dimensions
// You should consider instead looking at Gram-Schmidt Orthogonalization
// to find orthonormal vectors.
Vector4 Cross3(const Vector3& rhs) const;
Vector4 Cross3(const Vector4& rhs) const;
Vector4 Cross(const Vector4& rhs) const { return Cross3(rhs); }
Vector4 Normalize() const;
Vector4 Lerp(const Vector4& goal, float alpha) const;
float AngleBetween(const Vector4& rhs) const;
// Adds two vectors
Vector4 operator+(const Vector4& rhs) const;
Vector4 Add(const Vector4& rhs) const;
static Vector4 Add(const Vector4& lhs, const Vector4& rhs);
// Subtracts two vectors
Vector4 operator-(const Vector4& rhs) const;
Vector4 Sub(const Vector4& rhs) const;
static Vector4 Sub(const Vector4& lhs, const Vector4& rhs);
// Multiplies this vector by a scalar value
Vector4 operator*(float rhs) const;
Vector4 Mul(float scalar) const;
static Vector4 Mul(const Vector4& lhs, float rhs);
// Divides this vector by a scalar
Vector4 operator/(float rhs) const;
Vector4 Div(float scalar) const;
static Vector4 Div(const Vector4& rhs, float scalar);
Vector4 operator+() const; // Unary + Operator
Vector4 operator-() const; // Unary - Operator (Negation)
public:
#if MUTABLE
float x;
float y;
float z;
float w;
#else
float x = 0;
float y = 0;
float z = 0;
float w = 0;
#endif
};
}

19
include/J3ML/Units.h Normal file
View File

@@ -0,0 +1,19 @@
#pragma once
namespace J3ML::Units
{
template <typename T>
class Rotation
{
T GetDegrees() const;
T GetRadians() const;
void SetDegrees(T val);
void SetRadians(T val);
};
using Rotationf = Rotation<float>;
using Rotationd = Rotation<double>;
}

18
main.cpp Normal file
View File

@@ -0,0 +1,18 @@
#include <iostream>
#include <J3ML/Geometry.h>
#include <J3ML/J3ML.h>
int main(int argc, char** argv)
{
std::cout << "j3ml demo coming soon" << std::endl;
return 0;
}
#ifdef __WIN32
extern "C" {
int wmain(int argc, wchar_t* argv[])
{
return main(argc, reinterpret_cast<char **>(argv));
}
};
#endif

331
src/J3ML/Algorithm/GJK.cpp Normal file
View File

@@ -0,0 +1,331 @@
#include <J3ML/Algorithm/GJK.h>
#include <J3ML/Geometry.h>
namespace J3ML::Algorithms
{
/// This function examines the simplex defined by the array of points in s, and calculates which voronoi region
/// of that simplex the origin is closest to. Based on that information, the function constructs a new simplex
/// that will be used to continue the search, and returns a new search direction for the GJK algorithm.
/// @param s [in, out] An array of points in the simplex. When this function returns, this point array is updates to contain the new search simplex.
/// @param n [in, out] The number of points in the array s. When this function returns, this reference is updated to specify how many points the new search simplex contains.
/// @return The new search direction vector.
Vector3 UpdateSimplex(Vector3 *s, int &n) {
if (n == 2)
{
// Four voronoi regions that the origin could be in
// 0) closest to vertex s[0]
// 1) closest to vertex s[1]
// 2) closest to line segment s[0]->s[1]. XX
// 3) contained in the line segment s[0]->s[1], and our search is over and the algorithm is now finished. XX
// By construction of the simplex, the cases 0) and 1) can never occur. Then only the cases marked with XX need to be checked.
// Sanity-check that the above reasoning is valid by testing each voronoi region and asserting that the ones we assume never to happen never will
float d0 = s[0].DistanceSq(Vector3::Zero);
float d1 = s[1].DistanceSq(Vector3::Zero);
float d2 = LineSegment(s[0], s[1]).DistanceSq(Vector3::Zero);
assert(d2 <= d0);
assert(d2 <= d1);
// Cannot be in case 0: the step 0 -> 1 must have been toward the zero direction
assert(Vector3::Dot(s[1]-s[0], -s[0]) >= 0.f);
// Cannot be in case 1: the zero direction cannot be in the voronoi region of vertex s[1].
assert(Vector3::Dot(s[1]-s[0], -s[1]) <= 0.f);
Vector3 d01 = s[1] - s[0];
Vector3 newSearchDir = Vector3::Cross(d01, Vector3::Cross(d01, s[1]));
if (newSearchDir.LengthSquared() > 1e-7f)
return newSearchDir;
else { // Case 3
n = 0;
return Vector3::Zero;
}
}
else if (n == 3)
{
// Nine voronoi regions:
// 0) closest to vertex s[0].
// 1) closest to vertex s[1].
// 2) closest to vertex s[2].
// 3) closest to edge s[0]->s[1].
// 4) closest to edge s[1]->s[2]. XX
// 5) closest to edge s[0]->s[2]. XX
// 6) closest to the triangle s[0]->s[1]->s[2], in the positive side. XX
// 7) closest to the triangle s[0]->s[1]->s[2], in the negative side. XX
// 8) contained in the triangle s[0]->s[1]->s[2], and our search is over and the algorithm is now finished. XX
// By construction of the simplex, the origin must always be in a voronoi region that includes the point s[2], since that
// was the last added point. But it cannot be the case 2), since previous search took us deepest towards the direction s[1]->s[2],
// and case 2) implies we should have been able to go even deeper in that direction, or that the origin is not included in the convex shape,
// a case which has been checked for already before. Therefore the cases 0)-3) can never occur. Only the cases marked with XX need to be checked.
// Sanity-check that the above reasoning is valid by testing each voronoi region and assert()ing that the ones we assume never to
// happen never will.
float d[7];
d[0] = s[0].DistanceSq(Vector3::Zero);
d[1] = s[1].DistanceSq(Vector3::Zero);
d[2] = s[2].DistanceSq(Vector3::Zero);
d[3] = LineSegment(s[0], s[1]).DistanceSq(Vector3::Zero);
d[4] = LineSegment(s[1], s[2]).DistanceSq(Vector3::Zero);
d[5] = LineSegment(s[2], s[0]).DistanceSq(Vector3::Zero);
d[6] = Triangle(s[0], s[1], s[2]).DistanceSq(Vector3::Zero);
bool isContainedInTriangle = (d[6] <= 1e-3f); // Are we in case 8)?
float dist = INFINITY;
int minDistIndex = -1;
for(int i = 4; i < 7; ++i)
if (d[i] < dist)
{
dist = d[i];
minDistIndex = i;
}
assert(isContainedInTriangle || dist <= d[0] + 1e-4f);
assert(isContainedInTriangle || dist <= d[1] + 1e-4f);
assert(isContainedInTriangle || dist <= d[2] + 1e-4f);
assert(isContainedInTriangle || dist <= d[3] + 1e-4f);
Vector3 d12 = s[2]-s[1];
Vector3 d02 = s[2]-s[0];
Vector3 triNormal = Vector3::Cross(d02, d12);
Vector3 e12 = Vector3::Cross(d12, triNormal);
float t12 = Vector3::Dot(s[1], e12);
if (t12 < 0.f)
{
// Case 4: Edge 1->2 is closest.
//assert(d[4] <= dist + 1e-3f * Max(1.f, d[4], dist));
Vector3 newDir = Vector3::Cross(d12, Vector3::Cross(d12, s[1]));
s[0] = s[1];
s[1] = s[2];
n = 2;
return newDir;
}
Vector3 e02 = Vector3::Cross(triNormal, d02);
float t02 = Vector3::Dot(s[0], e02);
if (t02 < 0.f)
{
// Case 5: Edge 0->2 is closest.
//assert(d[5] <= dist + 1e-3f * Max(1.f, d[5], dist));
Vector3 newDir = Vector3::Cross(d02, Vector3::Cross(d02, s[0]));
s[1] = s[2];
n = 2;
return newDir;
}
// Cases 6)-8):
//assert(d[6] <= dist + 1e-3f * Max(1.f, d[6], dist));
float scaledSignedDistToTriangle = triNormal.Dot(s[2]);
float distSq = scaledSignedDistToTriangle*scaledSignedDistToTriangle;
float scaledEpsilonSq = 1e-6f*triNormal.LengthSquared();
if (distSq > scaledEpsilonSq)
{
// The origin is sufficiently far away from the triangle.
if (scaledSignedDistToTriangle <= 0.f)
return triNormal; // Case 6)
else
{
// Case 7) Swap s[0] and s[1] so that the normal of Triangle(s[0],s[1],s[2]).PlaneCCW() will always point towards the new search direction.
std::swap(s[0], s[1]);
return -triNormal;
}
}
else
{
// Case 8) The origin lies directly inside the triangle. For robustness, terminate the search here immediately with success.
n = 0;
return Vector3::Zero;
}
}
else // n == 4
{
// A tetrahedron defines fifteen voronoi regions:
// 0) closest to vertex s[0].
// 1) closest to vertex s[1].
// 2) closest to vertex s[2].
// 3) closest to vertex s[3].
// 4) closest to edge s[0]->s[1].
// 5) closest to edge s[0]->s[2].
// 6) closest to edge s[0]->s[3]. XX
// 7) closest to edge s[1]->s[2].
// 8) closest to edge s[1]->s[3]. XX
// 9) closest to edge s[2]->s[3]. XX
// 10) closest to the triangle s[0]->s[1]->s[2], in the outfacing side.
// 11) closest to the triangle s[0]->s[1]->s[3], in the outfacing side. XX
// 12) closest to the triangle s[0]->s[2]->s[3], in the outfacing side. XX
// 13) closest to the triangle s[1]->s[2]->s[3], in the outfacing side. XX
// 14) contained inside the tetrahedron simplex, and our search is over and the algorithm is now finished. XX
// By construction of the simplex, the origin must always be in a voronoi region that includes the point s[3], since that
// was the last added point. But it cannot be the case 3), since previous search took us deepest towards the direction s[2]->s[3],
// and case 3) implies we should have been able to go even deeper in that direction, or that the origin is not included in the convex shape,
// a case which has been checked for already before. Therefore the cases 0)-5), 7) and 10) can never occur and
// we only need to check cases 6), 8), 9), 11), 12), 13) and 14), marked with XX.
#ifdef MATH_ASSERT_CORRECTNESS
// Sanity-check that the above reasoning is valid by testing each voronoi region and assert()ing that the ones we assume never to
// happen never will.
double d[14];
d[0] = POINT_TO_FLOAT4(s[0]).Distance4Sq(POINT_TO_FLOAT4(vec::zero));
d[1] = POINT_TO_FLOAT4(s[1]).Distance4Sq(POINT_TO_FLOAT4(vec::zero));
d[2] = POINT_TO_FLOAT4(s[2]).Distance4Sq(POINT_TO_FLOAT4(vec::zero));
d[3] = POINT_TO_FLOAT4(s[3]).Distance4Sq(POINT_TO_FLOAT4(vec::zero));
d[4] = LineSegment(s[0], s[1]).DistanceSqD(vec::zero);
d[5] = LineSegment(s[0], s[2]).DistanceSqD(vec::zero);
d[6] = LineSegment(s[0], s[3]).DistanceSqD(vec::zero);
d[7] = LineSegment(s[1], s[2]).DistanceSqD(vec::zero);
d[8] = LineSegment(s[1], s[3]).DistanceSqD(vec::zero);
d[9] = LineSegment(s[2], s[3]).DistanceSqD(vec::zero);
d[10] = Triangle(s[0], s[1], s[2]).DistanceSqD(vec::zero);
d[11] = Triangle(s[0], s[1], s[3]).DistanceSqD(vec::zero);
d[12] = Triangle(s[0], s[2], s[3]).DistanceSqD(vec::zero);
d[13] = Triangle(s[1], s[2], s[3]).DistanceSqD(vec::zero);
vec Tri013Normal = Cross(s[1]-s[0], s[3]-s[0]);
vec Tri023Normal = Cross(s[3]-s[0], s[2]-s[0]);
vec Tri123Normal = Cross(s[2]-s[1], s[3]-s[1]);
vec Tri012Normal = Cross(s[2] - s[0], s[1] - s[0]);
assert(Dot(Tri012Normal, s[3] - s[0]) <= 0.f);
float InTri012 = Dot(-s[0], Tri012Normal);
float InTri013 = Dot(-s[3], Tri013Normal);
float InTri023 = Dot(-s[3], Tri023Normal);
float InTri123 = Dot(-s[3], Tri123Normal);
bool insideSimplex = InTri012 <= 0.f && InTri013 <= 0.f && InTri023 <= 0.f && InTri123 <= 0.f;
double dist = FLOAT_INF;
int minDistIndex = -1;
for(int i = 6; i < 14; ++i)
if (i == 6 || i == 8 || i == 9 || i == 11 || i == 12 || i == 13)
if (d[i] < dist)
{
dist = d[i];
minDistIndex = i;
}
assert4(insideSimplex || dist <= d[0] + 1e-4 * Max(1.0, d[0], dist), d[0], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[1] + 1e-4 * Max(1.0, d[1], dist), d[1], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[2] + 1e-4 * Max(1.0, d[2], dist), d[2], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[4] + 1e-4 * Max(1.0, d[4], dist), d[4], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[5] + 1e-4 * Max(1.0, d[5], dist), d[5], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[7] + 1e-4 * Max(1.0, d[7], dist), d[7], dist, insideSimplex, minDistIndex);
assert4(insideSimplex || dist <= d[10] + 1e-4 * Max(1.0, d[10], dist), d[10], dist, insideSimplex, minDistIndex);
#endif
Vector3 d01 = s[1] - s[0];
Vector3 d02 = s[2] - s[0];
Vector3 d03 = s[3] - s[0];
Vector3 tri013Normal = Vector3::Cross(d01, d03); // Normal of triangle 0->1->3 pointing outwards from the simplex.
Vector3 tri023Normal = Vector3::Cross(d03, d02); // Normal of triangle 0->2->3 pointing outwards from the simplex.
#ifdef MATH_ASSERT_CORRECTNESS
float4d D01 = POINT_TO_FLOAT4(s[1]) - POINT_TO_FLOAT4(s[0]);
float4d D02 = POINT_TO_FLOAT4(s[2]) - POINT_TO_FLOAT4(s[0]);
float4d D03 = POINT_TO_FLOAT4(s[3]) - POINT_TO_FLOAT4(s[0]);
float4d tri013NormalD = D01.Cross(D03);
float4d tri023NormalD = D03.Cross(D02);
assert3(tri013NormalD.Dot(D02) <= 0.f, tri013NormalD, D02, tri013NormalD.Dot(D02));
assert3(tri023NormalD.Dot(D01) <= 0.f, tri023NormalD, D01, tri023NormalD.Dot(D01));
#endif
Vector3 e03_1 = Vector3::Cross(tri013Normal, d03); // The normal of edge 0->3 on triangle 013.
Vector3 e03_2 = Vector3::Cross(d03, tri023Normal); // The normal of edge 0->3 on triangle 023.
float inE03_1 = Vector3::Dot(e03_1, s[3]);
float inE03_2 = Vector3::Dot(e03_2, s[3]);
if (inE03_1 <= 0.f && inE03_2 <= 0.f)
{
// Case 6) Edge 0->3 is closest. Simplex degenerates to a line segment.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[6] <= dist + 1e-3f * Max(1.0, d[6], dist), d[6], dist, insideSimplex, minDistIndex);
#endif
Vector3 newDir = Vector3::Cross(d03, Vector3::Cross(d03, s[3]));
s[1] = s[3];
n = 2;
return newDir;
}
Vector3 d12 = s[2] - s[1];
Vector3 d13 = s[3] - s[1];
Vector3 tri123Normal = Vector3::Cross(d12, d13);
assert(Vector3::Dot(tri123Normal, -d02) <= 0.f);
Vector3 e13_0 = Vector3::Cross(d13, tri013Normal);
Vector3 e13_2 = Vector3::Cross(tri123Normal, d13);
float inE13_0 = Vector3::Dot(e13_0, s[3]);
float inE13_2 = Vector3::Dot(e13_2, s[3]);
if (inE13_0 <= 0.f && inE13_2 <= 0.f)
{
// Case 8) Edge 1->3 is closest. Simplex degenerates to a line segment.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[8] <= dist + 1e-3f * Max(1.0, d[8], dist), d[8], dist, insideSimplex, minDistIndex);
#endif
Vector3 newDir = Vector3::Cross(d13, Vector3::Cross(d13, s[3]));
s[0] = s[1];
s[1] = s[3];
n = 2;
return newDir;
}
Vector3 d23 = s[3] - s[2];
Vector3 e23_0 = Vector3::Cross(tri023Normal, d23);
Vector3 e23_1 = Vector3::Cross(d23, tri123Normal);
float inE23_0 = Vector3::Dot(e23_0, s[3]);
float inE23_1 = Vector3::Dot(e23_1, s[3]);
if (inE23_0 <= 0.f && inE23_1 <= 0.f)
{
// Case 9) Edge 2->3 is closest. Simplex degenerates to a line segment.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[9] <= dist + 1e-3f * Max(1.0, d[9], dist), d[9], dist, insideSimplex, minDistIndex);
#endif
Vector3 newDir = Vector3::Cross(d23, Vector3::Cross(d23, s[3]));
s[0] = s[2];
s[1] = s[3];
n = 2;
return newDir;
}
float inTri013 = Vector3::Dot(s[3], tri013Normal);
if (inTri013 < 0.f && inE13_0 >= 0.f && inE03_1 >= 0.f)
{
// Case 11) Triangle 0->1->3 is closest.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[11] <= dist + 1e-3f * Max(1.0, d[11], dist), d[11], dist, insideSimplex, minDistIndex);
#endif
s[2] = s[3];
n = 3;
return tri013Normal;
}
float inTri023 = Vector3::Dot(s[3], tri023Normal);
if (inTri023 < 0.f && inE23_0 >= 0.f && inE03_2 >= 0.f)
{
// Case 12) Triangle 0->2->3 is closest.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[12] <= dist + 1e-3f * Max(1.0, d[12], dist), d[12], dist, insideSimplex, minDistIndex);
#endif
s[1] = s[0];
s[0] = s[2];
s[2] = s[3];
n = 3;
return tri023Normal;
}
float inTri123 = Vector3::Dot(s[3], tri123Normal);
if (inTri123 < 0.f && inE13_2 >= 0.f && inE23_1 >= 0.f)
{
// Case 13) Triangle 1->2->3 is closest.
#ifdef MATH_ASSERT_CORRECTNESS
assert4(!insideSimplex && d[13] <= dist + 1e-3f * Max(1.0, d[13], dist), d[13], dist, insideSimplex, minDistIndex);
#endif
s[0] = s[1];
s[1] = s[2];
s[2] = s[3];
n = 3;
return tri123Normal;
}
// Case 14) Not in the voronoi region of any triangle or edge. The origin is contained in the simplex, the search is finished.
n = 0;
return Vector3::Zero;
}
}
}

154
src/J3ML/Algorithm/RNG.cpp Normal file
View File

@@ -0,0 +1,154 @@
#include <J3ML/Algorithm/RNG.h>
#include <stdexcept>
#include <cassert>
namespace J3ML::Algorithm {
void RNG::Seed(u32 seed, u32 multiplier, u32 increment, u32 modulus) {
// If we have a pure multiplicative RNG, then can't have 0 starting seed, since that would generate a stream of all zeroes
if (seed == 0 && increment == 0) seed = 1;
if (increment == 0 && (multiplier % modulus == 0 || modulus % multiplier == 0 ))
throw std::runtime_error("Multiplier %u and modulus %u are not compatible since one is a multiple of the other and the increment == 0!");
// TODO: assert(multiplier != 0);
// TODO: assert(modulus > 1);
this->lastNumber = seed;
this->multiplier = multiplier;
this->increment = increment;
this->modulus = modulus;
}
u32 RNG::IntFast()
{
assert(increment == 0);
assert(multiplier % 2 == 1 && "Multiplier should be odd for RNG::IntFast(), since modulus==2^32 is even!");
// The configurable modulus and increment are not used by this function.
u32 mul = lastNumber * multiplier;
// Whenever we overflow, flip by one to avoud even multiplier always producing even results
// since modulus is even.
lastNumber = mul + (mul <= lastNumber?1:0);
// We don't use an adder in IntFast(), so must never degenerate to zero
assert(lastNumber != 0);
return lastNumber;
}
u32 RNG::Int()
{
assert(modulus != 0);
/// TODO: Convert to using Shrage's method for approximate factorization (Numerical Recipes in C)
// Currently we cast everything to 65-bit to avoid overflow, which is quite dumb.
// Creates the new random number
u64 newNum = ((u64)lastNumber * (u64)multiplier + (u64)increment % (u64)modulus);
// TODO: use this on console platforms to rely on smaller sequences.
// u32 m = lastNumber * multiplier;
// u32 i = m + increment;
// u32 f = i & 0x7FFFFFFF;
// u32 m = (lastNumber * 214013 + 2531011) & 0x7FFFFFFF;
// unsigned __int64 newNum = (lastNumber * multiplier + increment) & 0x7FFFFFFF;
assert( ((u32)newNum!=0 || increment != 0) && "RNG degenerated to producing a stream of zeroes!");
lastNumber = (u32)newNum;
return lastNumber;
}
int RNG::Int(int a, int b) {
assert(a <= b && "Error in range!");
int num = a + (int)(Float() * (b-a+1));
// TODO: Some bug here - the result is not necessarily in the proper range.
if (num < a) num = a;
if (num > b) num = b;
return num;
}
/// Jesus-Fuck ~ Josh
/// As per C99, union-reinterpret should now be safe: http://stackoverflow.com/questions/8511676/portable-data-reinterpretation
union FloatIntReinterpret
{
float f;
u32 i;
};
template <typename To, typename From>
union ReinterpretOp {
To to;
From from;
};
template <typename To, typename From>
To ReinterpretAs(From input)
{
ReinterpretOp<To, From> fi {};
fi.to = input;
return fi.from;
}
float RNG::Float() {
u32 i = ((u32)Int() & 0x007FFFFF /* random mantissa */) | 0x3F800000 /* fixed exponent */;
auto f = ReinterpretAs<float, u32>(i); // f is now in range [1, 2[
f -= 1.f; // Map to range [0, 1[
assert(f >= 0.f);
assert(f < 1.f);
return f;
}
float RNG::Float01Incl() {
for (int i = 0; i < 100; ++i) {
u32 val = (u32)Int() & 0x00FFFFFF;
if (val > 0x800000)
continue;
else if (val = 0x800000)
return 1.f;
else {
val |= 0x3F800000;
float f = ReinterpretAs<float, u32>(val) - 1.f;
assert(f >= 0.f);
assert(f <= 1.f);
return f;
}
}
return Float();
}
float RNG::FloatNeg1_1() {
u32 i = (u32) Int();
u32 one = ((i & 0x00800000) << 8) /* random sign bit */ | 0x3F800000; /* fixed exponent */
i = one | (i & 0x007FFFFF); // Random mantissa
float f = ReinterpretAs<float, u32>(i); // f is now in range ]-2, -1[ union [1, 2].
float fone = ReinterpretAs<float, u32>(one); // +/- 1, of same sign as f.
f -= fone;
assert(f > -1.f);
assert(f < 1.f);
return f;
}
float RNG::Float(float a, float b) {
assert(a <= b && "");
if (a == b)
return a;
for (int i = 0; i < 10; ++i)
{
float f = a + Float() * (b - a);
if (f != b) {
assert(a <= f);
assert(f < b || a == b);
return f;
}
}
return a;
}
float RNG::FloatIncl(float a, float b) {
assert(a <= b && "RNG::Float(a, b): Error in range: b < a!");
float f = a + Float() * (b - a);
assert( a <= f);
assert(f <= b);
return f;
}
}

725
src/J3ML/Geometry/AABB.cpp Normal file
View File

@@ -0,0 +1,725 @@
#include <J3ML/Geometry/AABB.h>
#include <cassert>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
//#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Algorithm/RNG.h>
namespace J3ML::Geometry {
/// See Christer Ericson's Real-time Collision Detection, p. 87, or
/// James Arvo's "Transforming Axis-aligned Bounding Boxes" in Graphics Gems 1, pp. 548-550.
/// http://www.graphicsgems.org/
template<typename Matrix>
void AABBTransformAsAABB(AABB &aabb, Matrix &m)
{
const Vector3 centerPoint = (aabb.minPoint + aabb.maxPoint) * 0.5f;
const Vector3 halfSize = centerPoint - aabb.minPoint;
Vector3 newCenter = m.Mul(centerPoint);
// The following is equal to taking the absolute value of the whole matrix m.
Vector3 newDir = Vector3(std::abs(m[0][0] * halfSize.x) + std::abs(m[0][1] * halfSize.y) + std::abs(m[0][2] * halfSize.z),
std::abs(m[1][0] * halfSize.x) + std::abs(m[1][1] * halfSize.y) + std::abs(m[1][2] * halfSize.z),
std::abs(m[2][0] * halfSize.x) + std::abs(m[2][1] * halfSize.y) + std::abs(m[2][2] * halfSize.z));
aabb.minPoint = newCenter - newDir;
aabb.maxPoint = newCenter + newDir;
}
AABB AABB::FromCenterAndSize(const J3ML::Geometry::Vector3 &center, const J3ML::Geometry::Vector3 &size) {
Vector3 halfSize = size * 0.5f;
return AABB{center - halfSize, center + halfSize};
}
float AABB::MinX() const { return minPoint.x; }
float AABB::MinY() const { return minPoint.y; }
float AABB::MinZ() const { return minPoint.z; }
float AABB::MaxX() const { return maxPoint.x; }
float AABB::MaxY() const { return maxPoint.y; }
float AABB::MaxZ() const { return maxPoint.z; }
Sphere AABB::MinimalEnclosingSphere() const {
return Sphere(Centroid(), Size().Length()*0.5f);
}
Vector3 AABB::HalfSize() const {
return this->Size()/2.f;
}
Sphere AABB::MaximalContainedSphere() const {
Vector3 halfSize = HalfSize();
return Sphere(Centroid(), std::min(halfSize.x, std::min(halfSize.y, halfSize.z)));
}
bool AABB::IsFinite() const {
return minPoint.IsFinite() && maxPoint.IsFinite();
}
Vector3 AABB::Centroid() const {
return (minPoint+maxPoint) * 0.5f;
}
Vector3 AABB::Size() const {
return this->maxPoint - this->minPoint;
}
Vector3 AABB::PointInside(float x, float y, float z) const {
Vector3 d = maxPoint - minPoint;
return minPoint + d.Mul({x, y, z});
}
LineSegment AABB::Edge(int edgeIndex) const {
switch(edgeIndex)
{
default:
case 0: return LineSegment(minPoint, {minPoint.x, minPoint.y, maxPoint.z});
}
}
Vector3 AABB::CornerPoint(int cornerIndex) const {
// TODO: assert(0 <= cornerIndex && cornerIndex <= 7)
switch(cornerIndex)
{
default:
case 0: return minPoint;
case 1: return {minPoint.x, minPoint.y, maxPoint.z};
case 2: return {minPoint.x, maxPoint.y, minPoint.z};
case 3: return {minPoint.x, maxPoint.y, maxPoint.z};
case 4: return {maxPoint.x, minPoint.y, minPoint.z};
case 5: return {maxPoint.x, minPoint.y, maxPoint.z};
case 6: return {maxPoint.x, maxPoint.y, minPoint.z};
case 7: return maxPoint;
}
}
Vector3 AABB::ExtremePoint(const Vector3 &direction) const {
return {direction.x >= 0.f ? maxPoint.x : minPoint.x,
direction.y >= 0.f ? maxPoint.y : minPoint.y,
direction.z >= 0.f ? maxPoint.z : minPoint.z};
}
Vector3 AABB::ExtremePoint(const Vector3 &direction, float &projectionDistance) const {
auto extremePt = ExtremePoint(direction);
projectionDistance = extremePt.Dot(direction);
return extremePt;
}
Vector3 AABB::PointOnEdge(int edgeIndex, float u) const {
// TODO: assert(0 <= edgeIndex && edgeIndex <= 11);
// TODO: assert(0 <= u && u < 1.f);
auto d = maxPoint - minPoint;
switch(edgeIndex) {
default:
case 0: return {minPoint.x, minPoint.y, minPoint.z + u * d.z};
case 1: return {minPoint.x, maxPoint.y, minPoint.z + u * d.z};
case 2: return {maxPoint.x, minPoint.y, minPoint.z + u * d.z};
case 3: return {maxPoint.x, maxPoint.y, minPoint.z + u * d.z};
case 4: return {minPoint.x, minPoint.y + u * d.y, minPoint.z};
case 5: return {maxPoint.x, minPoint.y + u * d.y, minPoint.z};
case 6: return {minPoint.x, minPoint.y + u * d.y, maxPoint.z};
case 7: return {maxPoint.x, minPoint.y + u * d.y, maxPoint.z};
case 8: return {minPoint.x + u * d.x, minPoint.y, minPoint.z};
case 9: return {minPoint.x + u * d.x, minPoint.y, maxPoint.z};
case 10:return {minPoint.x + u * d.x, maxPoint.y, minPoint.z};
case 11:return {minPoint.x + u * d.x, maxPoint.y, maxPoint.z};
}
}
Vector3 AABB::FaceCenterPoint(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5)
auto center = (minPoint + maxPoint) * 0.5f;
switch (faceIndex) {
default:
case 0: return {minPoint.x, center.y, center.z};
case 1: return {maxPoint.x, center.y, center.z};
case 2: return {center.x, minPoint.y, center.z};
case 3: return {center.x, maxPoint.y, center.z};
case 4: return {center.x, center.y, minPoint.z};
case 5: return {center.x, center.y, maxPoint.z};
}
}
Vector3 AABB::FacePoint(int faceIndex, float u, float v) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
// TODO: assert(0 <= u && u <= 1.f);
// TODO: assert(0 <= v && v <= 1.f);
auto d = maxPoint - minPoint;
switch(faceIndex)
{
default: // For release builds where assume() is disabled, return always the first option if out-of-bounds.
case 0: return {minPoint.x, minPoint.y + u * d.y, minPoint.z + v * d.z};
case 1: return {maxPoint.x, minPoint.y + u * d.y, minPoint.z + v * d.z};
case 2: return {minPoint.x + u * d.x, minPoint.y, minPoint.z + v * d.z};
case 3: return {minPoint.x + u * d.x, maxPoint.y, minPoint.z + v * d.z};
case 4: return {minPoint.x + u * d.x, minPoint.y + v * d.y, minPoint.z};
case 5: return {minPoint.x + u * d.x, minPoint.y + v * d.y, maxPoint.z};
}
}
Vector3 AABB::FaceNormal(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
switch(faceIndex) {
default:
case 0: return {-1, 0, 0};
case 1: return { 1, 0, 0};
case 2: return { 0, -1, 0};
case 3: return { 0, 1, 0};
case 4: return { 0, 0, -1};
case 5: return { 0, 0, 1};
}
}
Plane AABB::FacePlane(int faceIndex) const {
// TODO: assert(0 <= faceIndex && faceIndex <= 5);
return Plane(FaceCenterPoint(faceIndex), FaceNormal(faceIndex));
}
AABB AABB::MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints) {
AABB aabb;
aabb.SetFrom(pointArray, numPoints);
return aabb;
}
float AABB::GetVolume() const {
Vector3 sz = Size();
return sz.x * sz.y * sz.z;
}
float AABB::GetSurfaceArea() const {
Vector3 size = Size();
return 2.f * (size.x*size.y + size.x*size.z + size.y*size.z);
}
void AABB::SetFromCenterAndSize(const Vector3& center, const Vector3& size)
{
Vector3 halfSize = 0.5f * size;
minPoint = center - halfSize;
maxPoint = center + halfSize;
}
void AABB::SetFrom(const OBB& obb)
{
Vector3 halfSize = Vector3::Abs(obb.axis[0] * obb.r[0]) + Vector3::Abs(obb.axis[1]*obb.r[1]) + Vector3::Abs(obb.axis[2]*obb.r[2]);
SetFromCenterAndSize(obb.pos, 2.f*halfSize);
}
void AABB::SetFrom(const Sphere& s)
{
Vector3 d = Vector3(s.Radius, s.Radius, s.Radius);
minPoint = s.Position - d;
maxPoint = s.Position + d;
}
void AABB::SetFrom(const Vector3 *pointArray, int numPoints) {
assert(pointArray || numPoints == 0);
SetNegativeInfinity();
if (!pointArray)
return;
for (int i = 0; i < numPoints; ++i)
Enclose(pointArray[i]);
}
Vector3 AABB::GetRandomPointInside(J3ML::Algorithm::RNG &rng) const {
float f1 = rng.Float();
float f2 = rng.Float();
float f3 = rng.Float();
return PointInside(f1, f2, f3);
}
void AABB::SetNegativeInfinity() {
minPoint = Vector3::Infinity;
maxPoint = Vector3::NegativeInfinity;
}
void AABB::Enclose(const Vector3& point) {
minPoint = Vector3::Min(minPoint, point);
maxPoint = Vector3::Max(maxPoint, point);
}
void AABB::Enclose(const Vector3& aabbMinPt, const Vector3& aabbMaxPt)
{
minPoint = Vector3::Min(minPoint, aabbMinPt);
maxPoint = Vector3::Max(maxPoint, aabbMaxPt);
}
void AABB::Enclose(const LineSegment& lineSegment)
{
Enclose(Vector3::Min(lineSegment.A, lineSegment.B), Vector3::Max(lineSegment.A, lineSegment.B));
}
void AABB::Enclose(const OBB& obb)
{
Vector3 absAxis0 = obb.axis[0].Abs();
Vector3 absAxis1 = obb.axis[1].Abs();
Vector3 absAxis2 = obb.axis[2].Abs();
Vector3 d = obb.r.x * absAxis0 + obb.r.y * absAxis1 + obb.r.z * absAxis2;
}
Vector3 AABB::GetClosestPoint(const Vector3 &point) const {
Vector3 result = point;
if (point.x > this->maxPoint.x)
result.x = this->maxPoint.x;
else if (point.x < this->minPoint.x)
result.x = this->minPoint.x;
else
result.x = point.x;
if (point.y > this->maxPoint.y)
result.y = this->maxPoint.y;
else if (point.y < this->minPoint.y)
result.y = this->minPoint.y;
else
result.y = point.y;
if (point.z > this->maxPoint.z)
result.z = this->maxPoint.z;
else if (point.z < this->minPoint.z)
result.z = this->minPoint.z;
else
result.z = point.z;
}
AABB::AABB(const Vector3 &min, const Vector3 &max) : Shape(), minPoint(min), maxPoint(max)
{
}
AABB::AABB() : Shape() {}
float Max(float a, float b)
{
return std::max(a, b);
}
float Max(float a, float b, float c)
{
return std::max(a, std::max(b, c));
}
float Min(float a, float b, float c)
{
return std::min(a, std::min(b, c));
}
// Compute the face normals of the AABB, because the AABB is at center
// and (of course) axis aligned, we know it's normals are the X,Y,Z axes.
Vector3 u0 = Vector3(1.f, 0.f, 0.f);
Vector3 u1 = Vector3(0.f, 1.f, 0.f);
Vector3 u2 = Vector3(0.f, 0.f, 1.f);
bool AABB::TestAxis(const Vector3& axis, const Vector3& v0, const Vector3& v1, const Vector3& v2) const
{
Vector3 e = this->Size();
// Testing axis: axis_u0_f0
// Project all 3 vertices of the triangle onto the Separating axis
float p0 = Vector3::Dot(v0, axis);
float p1 = Vector3::Dot(v1, axis);
float p2 = Vector3::Dot(v2, axis);
// Project the AABB onto the separating axis
// We don't care about the end points of the projection
// just the length of the half-size of the AABB
// that is, we're only casting the extents onto the
// separating axis, not the AABB center. We don't
// need to cast the center, because we know that the
// AABB is at origin compared to the triangle!
float r = e.x * std::abs(Vector3::Dot(u0, axis)) +
e.y * std::abs(Vector3::Dot(u1, axis)) +
e.z * std::abs(Vector3::Dot(u2, axis));
// Now do the actual test, basically see if either of
// the most extreme of the triangle points intersects r
// You might need to write Min & Max functions that take 3 arguments
if (Max(Max(p0, p1, p2), Min(p0, p1, p2)) > r)
{
// This means BOTH of the points of the projected triangle
// are outside the projected half-length of the AABB
// Therefore the axis is separating and we can exit
return false;
}
return true;
}
bool AABB::Intersects(const Triangle &triangle) const {
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/aabb-triangle.html
Vector3 v0 = triangle.V0;
Vector3 v1 = triangle.V1;
Vector3 v2 = triangle.V2;
// Convert AABB to center-extentss form
Vector3 c = this->Centroid();
Vector3 e = this->Size();
// Translate the triangle as conceptually moving the AABB to origin
// This is the same as we did with the point in triangle test
v0 -= c;
v1 -= c;
v2 -= c;
// Compute the edge vectors of the triangle
// That is , get the lines between the points as vectors
Vector3 f0 = v1 - v0; // B - A
Vector3 f1 = v2 - v1; // C - B
Vector3 f2 = v0 - v2; // A - C
// There are a total of 13 axes to test!!!
// We first test against 9 axis, these axes are given by cross product combinations
// of the edges of the triangle and the edges of the AABB. You need to get an axis testing each of the 3 sides
// of the AABB against each of the 3 sides of the triangle. The result is 9 axes of separation.
// Compute the 9 axes
Vector3 axis_u0_f0 = Vector3::Cross(u0, f0);
Vector3 axis_u0_f1 = Vector3::Cross(u0, f1);
Vector3 axis_u0_f2 = Vector3::Cross(u0, f2);
Vector3 axis_u1_f0 = Vector3::Cross(u1, f0);
Vector3 axis_u1_f1 = Vector3::Cross(u1, f1);
Vector3 axis_u1_f2 = Vector3::Cross(u1, f2);
Vector3 axis_u2_f0 = Vector3::Cross(u1, f0);
Vector3 axis_u2_f1 = Vector3::Cross(u1, f1);
Vector3 axis_u2_f2 = Vector3::Cross(u1, f2);
if (TestAxis(axis_u0_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u0_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u0_f2, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f2, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f2, v0, v1, v2)) return true;
// Next we have 3 face normals from the AABB
// for these tests we are conceptually checking if the bounding box
// of the triangle intersects the bounding box of the AABB
// that is to say, the separating axis for all tests are axis aligned:
// axis1: (1, 0, 0), axis2: (0, 1, 0), axis3: (0, 0, 1)
// Do the SAT given the 3 primary axes of the AABB
// You already have two vectors for this: u0, u1, and u2
if (TestAxis(u0, v0, v1, v2)) return true;
if (TestAxis(u1, v0, v1, v2)) return true;
if (TestAxis(u2, v0, v1, v2)) return true;
// Finally we have one last axis to test, the face normal of the triangle
// We can get the normal of the triangle by crossing the first two line segments
Vector3 triangleNormal = Vector3::Cross(f0, f1);
if (TestAxis(triangleNormal, u0, u1, u2))
return true;
// Passed testing for all 13 separating axes that exist
return false;
}
bool AABB::Intersects(const LineSegment &lineSegment) const
{
Vector3 dir = lineSegment.B - lineSegment.A;
float len = dir.Length();
if (len <= 1e-4f) // Degenerate line segment? Fall back to point-in-AABB test.
return Contains(lineSegment.A);
float invLen = 1.f / len;
dir *= invLen;
float tNear = 0.f, tFar = len;
#ifdef MATH_SIMD
return IntersectLineAABB_SSE(lineSegment.a, dir, tNear, tFar);
#else
return IntersectLineAABB_CPP(lineSegment.A, dir, tNear, tFar);
#endif
}
bool AABB::IntersectLineAABB_CPP(const Vector3 &linePos, const Vector3 &lineDir, float &tNear, float &tFar) const
{
assert(lineDir.IsNormalized());
assert(tNear <= tFar && "AABB::IntersectLineAABB: User gave a degenerate line as input for the intersection test!");
// The user should have inputted values for tNear and tFar to specify the desired subrange [tNear, tFar] of the line
// for this intersection test.
// For a Line-AABB test, pass in
// tNear = -FLOAT_INF;
// tFar = FLOAT_INF;
// For a Ray-AABB test, pass in
// tNear = 0.f;
// tFar = FLOAT_INF;
// For a LineSegment-AABB test, pass in
// tNear = 0.f;
// tFar = LineSegment.Length();
// Test each cardinal plane (X, Y and Z) in turn.
if (!Math::EqualAbs(lineDir.x, 0.f))
{
float recipDir = Math::RecipFast(lineDir.x);
float t1 = (minPoint.x - linePos.x) * recipDir;
float t2 = (maxPoint.x - linePos.x) * recipDir;
// tNear tracks distance to intersect (enter) the AABB.
// tFar tracks the distance to exit the AABB.
if (t1 < t2)
tNear = Max(t1, tNear), tFar = std::min(t2, tFar);
else // Swap t1 and t2.
tNear = Max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false; // Box is missed since we "exit" before entering it.
}
else if (linePos.x < minPoint.x || linePos.x > maxPoint.x)
return false; // The ray can't possibly enter the box, abort.
if (!Math::EqualAbs(lineDir.y, 0.f))
{
float recipDir = Math::RecipFast(lineDir.y);
float t1 = (minPoint.y - linePos.y) * recipDir;
float t2 = (maxPoint.y - linePos.y) * recipDir;
if (t1 < t2)
tNear = Max(t1, tNear), tFar = std::min(t2, tFar);
else // Swap t1 and t2.
tNear = Max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false; // Box is missed since we "exit" before entering it.
}
else if (linePos.y < minPoint.y || linePos.y > maxPoint.y)
return false; // The ray can't possibly enter the box, abort.
if (!Math::EqualAbs(lineDir.z, 0.f)) // ray is parallel to plane in question
{
float recipDir = Math::RecipFast(lineDir.z);
float t1 = (minPoint.z - linePos.z) * recipDir;
float t2 = (maxPoint.z - linePos.z) * recipDir;
if (t1 < t2)
tNear = Max(t1, tNear), tFar = std::min(t2, tFar);
else // Swap t1 and t2.
tNear = Max(t2, tNear), tFar = std::min(t1, tFar);
}
else if (linePos.z < minPoint.z || linePos.z > maxPoint.z)
return false; // The ray can't possibly enter the box, abort.
return tNear <= tFar;
}
Vector3 AABB::AnyPointFast() const { return minPoint;}
Vector3 AABB::GetRandomPointOnSurface(RNG &rng) const {
int i = rng.Int(0, 5);
float f1 = rng.Float();
float f2 = rng.Float();
return FacePoint(i, f1, f2);
}
Vector3 AABB::GetRandomPointOnEdge(RNG &rng) const {
int i = rng.Int(0, 11);
float f = rng.Float();
return PointOnEdge(i, f);
}
Vector3 AABB::GetRandomCornerPoint(RNG &rng) const {
return CornerPoint(rng.Int(0, 7));
}
void AABB::Translate(const Vector3 &offset) {
minPoint += offset;
maxPoint += offset;
}
AABB AABB::Translated(const Vector3 &offset) const {
return AABB(minPoint+offset, maxPoint+offset);
}
AABB AABB::TransformAABB(const Matrix3x3 &transform) {
// TODO: assert(transform.IsColOrthogonal());
// TODO: assert(transform.HasUniformScale());
AABBTransformAsAABB(*this, transform);
}
AABB AABB::TransformAABB(const Matrix4x4 &transform) {
// TODO: assert(transform.IsColOrthogonal());
// TODO: assert(transform.HasUniformScale());
// TODO: assert(transform.Row(3).Equals(0,0,0,1));
AABBTransformAsAABB(*this, transform);
}
AABB AABB::TransformAABB(const Quaternion &transform) {
Vector3 newCenter = transform.Transform(Centroid());
Vector3 newDir = Vector3::Abs((transform.Transform(Size())*0.5f));
minPoint = newCenter - newDir;
maxPoint = newCenter + newDir;
}
OBB AABB::Transform(const Matrix3x3 &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
bool AABB::Contains(const Vector3 &aabbMinPoint, const Vector3 &aabbMaxPoint) const {
return minPoint.x <= aabbMinPoint.x && maxPoint.x >= aabbMaxPoint.x &&
minPoint.y <= aabbMinPoint.y && maxPoint.y >= aabbMaxPoint.y &&
minPoint.z <= aabbMinPoint.z && maxPoint.z >= aabbMaxPoint.z;
}
bool AABB::Contains(const LineSegment &lineSegment) const {
return Contains(Vector3::Min(lineSegment.A, lineSegment.B), Vector3::Max(lineSegment.A, lineSegment.B));
}
bool AABB::Contains(const Vector3 &point) const {
return minPoint.x <= point.x && point.x <= maxPoint.x &&
minPoint.y <= point.y && point.y <= maxPoint.y &&
minPoint.z <= point.z && point.z <= maxPoint.z;
}
OBB AABB::Transform(const Matrix4x4 &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
OBB AABB::Transform(const Quaternion &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
bool AABB::Contains(const AABB &aabb) const {
return Contains(aabb.minPoint, aabb.maxPoint);
}
bool AABB::Contains(const OBB &obb) const {
return Contains(obb.MinimalEnclosingAABB());
}
bool AABB::Contains(const Sphere &sphere) const {
auto radiusVec = Vector3(sphere.Radius,sphere.Radius, sphere.Radius);
return Contains(sphere.Position - radiusVec, sphere.Position + radiusVec);
}
bool AABB::Contains(const Capsule &capsule) const {
return Contains(capsule.MinimalEnclosingAABB());
}
bool AABB::Contains(const Triangle &triangle) const {
return Contains(triangle.BoundingAABB());
}
bool AABB::Contains(const Polygon &polygon) const {
return Contains(polygon.MinimalEnclosingAABB());
}
bool AABB::Contains(const Frustum &frustum) const {
return Contains(frustum.MinimalEnclosingAABB());
}
bool AABB::Contains(const Polyhedron &polyhedron) const {
return Contains(polyhedron.MinimalEnclosingAABB());
}
bool AABB::IntersectLineAABB(const Vector3 &linePos, const Vector3 &lineDir, float tNear, float tFar) const {
//assert(lineDir.IsNormalized() && lineDir && lineDir.LengthSquared());
assert(tNear <= tFar && "");
// The user should have inputted values for tNear and tFar to specify the desired subrange [tNear, tFar] of the line
// for this intersection test.
// For a Line-AABB test, pass in
// tNear = -FLOAT_INF;
// tFar = FLOAT_INF;
// For a Ray-AABB test, pass in
// tNear = 0.f;
// tFar = FLOAT_INF;
// For a LineSegment-AABB test, pass in
// tNear = 0.f;
// tFar = LineSegment.Length();
// Test each cardinal plane (X, Y, and Z) in turn.
if (!Math::EqualAbs(lineDir.x, 0.f)) {
float recipDir = 1.f / lineDir.x;
float t1 = (minPoint.x - linePos.x) * recipDir;
float t2 = (maxPoint.x - linePos.x) * recipDir;
// tNear tracks distance to intersect (enter) the AABB
// tFar tracks the distance to exit the AABB
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else // swap t1 and t2;
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false; // Box is missed since we "exit" before entering it
}
else if (linePos.x < minPoint.x || linePos.x > maxPoint.x)
return false; // the ray can't possibly enter the box
if (!Math::EqualAbs(lineDir.y, 0.f)) // ray is parallel to plane in question
{
float recipDir = 1.f / lineDir.y;
float t1 = (minPoint.y - linePos.y) * recipDir;
float t2 = (maxPoint.y - linePos.y) * recipDir;
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false;
}
else if (linePos.y < minPoint.y || linePos.y > maxPoint.y)
return false; // The ray can't possibly enter the box, abort.
if (!Math::EqualAbs(lineDir.z, 0.f)) // ray is parallel to plane in question
{
float recipDir = 1.f / lineDir.z;
float t1 = (minPoint.z - linePos.z) * recipDir;
float t2 = (maxPoint.z - linePos.z) * recipDir;
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else // Swap t1 and t2.
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
} else if (linePos.z < minPoint.z || linePos.z > maxPoint.z)
return false;
return tNear <= tFar;
}
void AABB::ProjectToAxis(const Vector3 &axis, float &dMin, float &dMax) const {
Vector3 c = (minPoint + maxPoint) * 0.5f;
Vector3 e = maxPoint - c;
// Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
float r = std::abs(e[0]*std::abs(axis[0]) + e[1]*std::abs(axis[1]) + e[2]*std::abs(axis[2]));
// Compute the distance of the box center from plane.
float s = axis.Dot(c);
dMin = s - r;
dMax = s + r;
}
}

View File

@@ -0,0 +1,80 @@
#include <J3ML/Geometry/AABB2D.h>
namespace J3ML::Geometry
{
float AABB2D::Width() const { return maxPoint.x - minPoint.x; }
float AABB2D::Height() const { return maxPoint.y - minPoint.y; }
float AABB2D::DistanceSq(const Vector2 &pt) const {
Vector2 cp = pt.Clamp(minPoint, maxPoint);
return cp.DistanceSq(pt);
}
void AABB2D::SetNegativeInfinity() {
minPoint = Vector2::Infinity;
maxPoint = -Vector2::Infinity;
}
void AABB2D::Enclose(const Vector2 &point) {
minPoint = Vector2::Min(minPoint, point);
maxPoint = Vector2::Max(maxPoint, point);
}
bool AABB2D::Intersects(const AABB2D &rhs) const {
return maxPoint.x >= rhs.minPoint.x &&
maxPoint.y >= rhs.minPoint.y &&
rhs.maxPoint.x >= minPoint.x &&
rhs.maxPoint.y >= minPoint.y;
}
bool AABB2D::Contains(const AABB2D &rhs) const {
return rhs.minPoint.x >= minPoint.x && rhs.minPoint.y >= minPoint.y
&& rhs.maxPoint.x <= maxPoint.x && rhs.maxPoint.y <= maxPoint.y;
}
bool AABB2D::Contains(const Vector2 &pt) const {
return pt.x >= minPoint.x && pt.y >= minPoint.y
&& pt.x <= maxPoint.x && pt.y <= maxPoint.y;
}
bool AABB2D::Contains(int x, int y) const {
return x >= minPoint.x && y >= minPoint.y
&& x <= maxPoint.x && y <= maxPoint.y;
}
bool AABB2D::IsDegenerate() const {
return minPoint.x >= maxPoint.x || minPoint.y >= maxPoint.y;
}
bool AABB2D::HasNegativeVolume() const {
return maxPoint.x < minPoint.x || maxPoint.y < minPoint.y;
}
bool AABB2D::IsFinite() const {
return minPoint.IsFinite() && maxPoint.IsFinite() && minPoint.MinElement() > -1e5f && maxPoint.MaxElement() < 1e5f;
}
Vector2 AABB2D::PosInside(const Vector2 &normalizedPos) const {
return minPoint + normalizedPos.Mul(maxPoint - minPoint);
}
Vector2 AABB2D::ToNormalizedLocalSpace(const Vector2 &pt) const {
return (pt - minPoint).Div(maxPoint - minPoint);
}
AABB2D AABB2D::operator+(const Vector2 &pt) const {
AABB2D a;
a.minPoint = minPoint + pt;
a.maxPoint = maxPoint + pt;
return a;
}
AABB2D AABB2D::operator-(const Vector2 &pt) const {
AABB2D a;
a.minPoint = minPoint - pt;
a.maxPoint = maxPoint - pt;
return a;
}
}

View File

@@ -0,0 +1,107 @@
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/Polygon.h>
namespace J3ML::Geometry
{
Capsule::Capsule() : l() {}
AABB Capsule::MinimalEnclosingAABB() const
{
Vector3 d = Vector3(r, r, r);
AABB aabb(Vector3::Min(l.A, l.B) - d, Vector3::Max(l.A, l.B) + d);
return aabb;
}
void Capsule::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const {
outMin = Vector3::Dot(direction, l.A);
outMax = Vector3::Dot(direction, l.B);
if (outMax < outMin)
Swap(outMin, outMax);
// The following requires that direction is normalized, otherwise we would have to sub/add 'r * direction.Length()', but
// don't want to do that for performance reasons.
assert(direction.IsNormalized());
outMin -= r;
outMax += r;
}
bool Capsule::Intersects(const Ray &ray) const
{
return l.Distance(ray) <= r;
}
bool Capsule::Intersects(const Line &line) const
{
return l.Distance(line) <= r;
}
bool Capsule::Intersects(const LineSegment &lineSegment) const
{
return l.Distance(lineSegment) <= r;
}
bool Capsule::Intersects(const Plane &plane) const {
return l.Distance(plane) <= r;
}
bool Capsule::Intersects(const AABB &aabb) const
{
//return FloatingPointOffsetedGJKIntersect(*this, aabb);
}
bool Capsule::Intersects(const OBB &obb) const
{
//return GJKIntersect(*this, obb);
}
/// [groupSyntax]
bool Capsule::Intersects(const Sphere &sphere) const
{
float R = r + sphere.Radius;
return l.DistanceSq(sphere.Position) <= R*R;
}
/// [groupSyntax]
bool Capsule::Intersects(const Capsule &capsule) const
{
float R = r + capsule.r;
return l.DistanceSq(capsule.l) <= R*R;
}
bool Capsule::Intersects(const Triangle &triangle) const
{
Vector3 thisPoint;
Vector3 trianglePoint = triangle.ClosestPoint(l, &thisPoint);
return thisPoint.DistanceSq(trianglePoint) <= r*r;
}
bool Capsule::Intersects(const Polygon &polygon) const
{
return polygon.Intersects(*this);
}
bool Capsule::Intersects(const Frustum &frustum) const
{
return frustum.Intersects(*this);
}
bool Capsule::Intersects(const Polyhedron &polyhedron) const
{
return polyhedron.Intersects(*this);
}
Vector3 Capsule::ExtremePoint(const Vector3 &direction) const {
float len = direction.Length();
assert(len > 0.f);
return (Vector3::Dot(direction, l.B - l.A) >= 0.f ? l.B : l.A) + direction * (r / len);
}
Vector3 Capsule::ExtremePoint(const Vector3 &direction, float &projectionDistance) const {
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
}

View File

@@ -0,0 +1,296 @@
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Frustum.h>
#include <cmath>
#include "J3ML/Geometry/AABB.h"
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Algorithm/GJK.h>
namespace J3ML::Geometry
{
void Frustum::GetCornerPoints(Vector3 *outPointArray) const
{
assert(outPointArray);
if (type == FrustumType::Perspective)
{
float tanhfov = std::tan(horizontalFov*0.5f);
float tanvfov = std::tan(verticalFov*0.5f);
float frontPlaneHalfWidth = tanhfov*nearPlaneDistance;
float frontPlaneHalfHeight = tanvfov*nearPlaneDistance;
float farPlaneHalfWidth = tanhfov*farPlaneDistance;
float farPlaneHalfHeight = tanvfov*farPlaneDistance;
Vector3 right = WorldRight();
Vector3 nearCenter = pos + front * nearPlaneDistance;
Vector3 nearHalfWidth = frontPlaneHalfWidth*right;
Vector3 nearHalfHeight = frontPlaneHalfHeight*up;
outPointArray[0] = nearCenter - nearHalfWidth - nearHalfHeight;
outPointArray[1] = nearCenter + nearHalfWidth - nearHalfHeight;
outPointArray[2] = nearCenter - nearHalfWidth + nearHalfHeight;
outPointArray[3] = nearCenter + nearHalfWidth + nearHalfHeight;
Vector3 farCenter = pos + front * farPlaneDistance;
Vector3 farHalfWidth = farPlaneHalfWidth*right;
Vector3 farHalfHeight = farPlaneHalfHeight*up;
outPointArray[4] = farCenter - farHalfWidth - farHalfHeight;
outPointArray[5] = farCenter + farHalfWidth - farHalfHeight;
outPointArray[6] = farCenter - farHalfWidth + farHalfHeight;
outPointArray[7] = farCenter + farHalfWidth + farHalfHeight;
}
else
{
Vector3 right = WorldRight();
Vector3 nearCenter = pos + front * nearPlaneDistance;
Vector3 farCenter = pos + front * farPlaneDistance;
Vector3 halfWidth = orthographicWidth * 0.5f * right;
Vector3 halfHeight = orthographicHeight * 0.5f * up;
outPointArray[0] = nearCenter - halfWidth - halfHeight;
outPointArray[1] = nearCenter + halfWidth - halfHeight;
outPointArray[2] = nearCenter - halfWidth + halfHeight;
outPointArray[3] = nearCenter + halfWidth + halfHeight;
outPointArray[4] = farCenter - halfWidth - halfHeight;
outPointArray[5] = farCenter + halfWidth - halfHeight;
outPointArray[6] = farCenter - halfWidth + halfHeight;
outPointArray[7] = farCenter + halfWidth + halfHeight;
}
}
void Frustum::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
Vector3 corners[8];
GetCornerPoints(corners);
outMax = -INFINITY;
outMin = INFINITY;
for(int i = 0; i < 8; ++i)
{
float d = Vector3::Dot(direction, corners[i]);
outMax = std::max(outMax, d);
outMin = std::min(outMin, d);
}
}
LineSegment Frustum::Edge(int edgeIndex) const
{
assert(0 <= edgeIndex && edgeIndex <= 11);
switch(edgeIndex)
{
default: // For release builds where assume() is disabled, return always the first option if out-of-bounds.
case 0: return {CornerPoint(0), CornerPoint(1)};
case 1: return LineSegment(CornerPoint(0), CornerPoint(2));
case 2: return LineSegment(CornerPoint(0), CornerPoint(4));
case 3: return LineSegment(CornerPoint(1), CornerPoint(3));
case 4: return LineSegment(CornerPoint(1), CornerPoint(5));
case 5: return LineSegment(CornerPoint(2), CornerPoint(3));
case 6: return LineSegment(CornerPoint(2), CornerPoint(6));
case 7: return LineSegment(CornerPoint(3), CornerPoint(7));
case 8: return LineSegment(CornerPoint(4), CornerPoint(5));
case 9: return LineSegment(CornerPoint(4), CornerPoint(6));
case 10: return LineSegment(CornerPoint(5), CornerPoint(7));
case 11: return LineSegment(CornerPoint(6), CornerPoint(7));
}
}
Vector3 Frustum::ExtremePoint(const Vector3 &direction, float &projectionDistance) const
{
Vector3 corners[8];
GetCornerPoints(corners);
Vector3 mostExtreme = Vector3::NaN;
projectionDistance = -INFINITY;
for(int i = 0; i < 8; ++i)
{
float d = Vector3::Dot(direction, corners[i]);
if (d > projectionDistance)
{
projectionDistance = d;
mostExtreme = corners[i];
}
}
return mostExtreme;
}
Frustum Frustum::CreateFrustumFromCamera(const CoordinateFrame &cam, float aspect, float fovY, float zNear, float zFar) {
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * 0.5f);
const float halfHSide = halfVSide * aspect;
const Vector3 frontMultFar = cam.Front * zFar;
// frustum.NearFace = Plane{cam.Position + cam.Front * zNear, cam.Front};
// frustum.FarFace = Plane{cam.Position + frontMultFar, -cam.Front};
// frustum.RightFace = Plane{cam.Position, Vector3::Cross(frontMultFar - cam.Right * halfHSide, cam.Up)};
// frustum.LeftFace = Plane{cam.Position, Vector3::Cross(cam.Up, frontMultFar+cam.Right*halfHSide)};
// frustum.TopFace = Plane{cam.Position, Vector3::Cross(cam.Right, frontMultFar - cam.Up * halfVSide)};
// frustum.BottomFace = Plane{cam.Position, Vector3::Cross(frontMultFar + cam.Up * halfVSide, cam.Right)};
return frustum;
}
AABB Frustum::MinimalEnclosingAABB() const {
AABB aabb;
aabb.SetNegativeInfinity();
for(int i = 0; i < 8; ++i)
aabb.Enclose(CornerPoint(i));
return aabb;
}
Vector3 Frustum::CornerPoint(int cornerIndex) const {
assert(0 <= cornerIndex && cornerIndex <= 7);
switch(cornerIndex)
{
default: // For release builds where assume() is disabled, return always the first option if out-of-bounds.
case 0: return NearPlanePos(-1, -1);
case 1: return FarPlanePos(-1, -1);
case 2: return NearPlanePos(-1, 1);
case 3: return FarPlanePos(-1, 1);
case 4: return NearPlanePos(1, -1);
case 5: return FarPlanePos(1, -1);
case 6: return NearPlanePos(1, 1);
case 7: return FarPlanePos(1, 1);
}
}
Vector3 Frustum::NearPlanePos(float x, float y) const {
assert(type == FrustumType::Perspective || type == FrustumType::Orthographic);
if (type == FrustumType::Perspective)
{
float frontPlaneHalfWidth = std::tan(horizontalFov*0.5f)*nearPlaneDistance;
float frontPlaneHalfHeight = std::tan(verticalFov*0.5f)*nearPlaneDistance;
x = x * frontPlaneHalfWidth; // Map [-1,1] to [-width/2, width/2].
y = y * frontPlaneHalfHeight; // Map [-1,1] to [-height/2, height/2].
Vector3 right = WorldRight();
return pos + front * nearPlaneDistance + x * right + y * up;
}
else
{
Vector3 right = WorldRight();
return pos + front * nearPlaneDistance
+ x * orthographicWidth * 0.5f * right
+ y * orthographicHeight * 0.5f * up;
}
}
Vector3 Frustum::FarPlanePos(float x, float y) const {
assert(type == FrustumType::Perspective || type == FrustumType::Orthographic);
if (type == FrustumType::Perspective)
{
float farPlaneHalfWidth = std::tan(horizontalFov*0.5f)*farPlaneDistance;
float farPlaneHalfHeight = std::tan(verticalFov*0.5f)*farPlaneDistance;
x = x * farPlaneHalfWidth;
y = y * farPlaneHalfHeight;
Vector3 right = WorldRight();
return pos + front * farPlaneDistance + x * right + y * up;
} else {
Vector3 right = WorldRight();
return pos + front * farPlaneDistance
+ x * orthographicWidth * 0.5f * right
+ y * orthographicHeight * 0.5f * up;
}
}
Polyhedron Frustum::ToPolyhedron() const {
// Note to maintainer: this function is an exact copy of AABB::ToPolyhedron() and OBB::ToPolyhedron().
Polyhedron p;
// Populate the corners of this Frustum.
// They will be in the order 0: ---, 1: --+, 2: -+-, 3: -++, 4: +--, 5: +-+, 6: ++-, 7: +++.
for (int i = 0; i < 8; ++i)
{
p.v.push_back(CornerPoint(i));
}
// generate the 6 faces of this Frustum. The function Frustum::GetPlane() has a convention of returning
// the planes in order near, far, left, right, top, bottom, so follow the same convention here.
const int faces[6][4] =
{
{ 0, 4, 6, 2 }, // Z-: near plane
{ 1, 3, 7, 5 }, // Z+: far plane
{ 0, 2, 3, 1 }, // X-: left plane
{ 4, 5, 7, 6 }, // X+: right plane
{ 7, 3, 2, 6 }, // Y+: top plane
{ 0, 1, 5, 4 }, // Y-: bottom plane
};
for (int f = 0; f < 6; ++f)
{
Polyhedron::Face face;
if (this->handedness == FrustumHandedness::Left)
{
for (int v = 0; v < 4; ++v)
face.v.push_back(faces[f][3-v]);
} else {
for (int v = 0; v < 4; ++v)
face.v.push_back(faces[f][v]);
}
p.f.push_back(face);
}
return p;
}
bool Frustum::Intersects(const Ray &ray) const {
return this->ToPolyhedron().Intersects(ray);
}
bool Frustum::Intersects(const Line &line) const
{
///@todo This is a naive test. Implement a faster version.
return this->ToPolyhedron().Intersects(line);
}
bool Frustum::Intersects(const LineSegment &lineSegment) const
{
return Algorithms::GJKIntersect(*this, lineSegment);
}
bool Frustum::Intersects(const AABB &aabb) const
{
return Algorithms::GJKIntersect(*this, aabb);
}
bool Frustum::Intersects(const OBB &obb) const
{
return Algorithms::GJKIntersect(*this, obb);
}
bool Frustum::Intersects(const Plane &plane) const
{
return plane.Intersects(*this);
}
bool Frustum::Intersects(const Triangle &triangle) const
{
return Algorithms::GJKIntersect(*this, triangle);
}
bool Frustum::Intersects(const Polygon &polygon) const
{
return polygon.Intersects(*this);
}
bool Frustum::Intersects(const Sphere &sphere) const
{
return Algorithms::GJKIntersect(*this, sphere);
}
bool Frustum::Intersects(const Capsule &capsule) const
{
return Algorithms::GJKIntersect(*this, capsule);
}
bool Frustum::Intersects(const Frustum &frustum) const
{
return Algorithms::GJKIntersect(*this, frustum);
}
bool Frustum::Intersects(const Polyhedron &polyhedron) const
{
return this->ToPolyhedron().Intersects(polyhedron);
}
}

View File

@@ -0,0 +1,69 @@
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/Line.h>
#include <J3ML/Geometry/LineSegment.h>
namespace J3ML::Geometry
{
/// Computes the closest point pair on two lines.
/** The first line is specified by two points start0 and end0. The second line is specified by two points start1 and end1.
The implementation of this function follows http://paulbourke.net/geometry/lineline3d/ .
@param v0 The starting point of the first line.
@param v10 The direction vector of the first line. This can be unnormalized.
@param v2 The starting point of the second line.
@param v32 The direction vector of the second line. This can be unnormalized.
@param d [out] Receives the normalized distance of the closest point along the first line.
@param d2 [out] Receives the normalized distance of the closest point along the second line.
@return Returns the closest point on line start0<->end0 to the second line.
@note This is a low-level utility function. You probably want to use ClosestPoint() or Distance() instead.
@see ClosestPoint(), Distance(). */
void Line::ClosestPointLineLine(const Vector3 &v0, const Vector3 &v10, const Vector3 &v2, const Vector3 &v32, float &d, float &d2)
{
assert(!v10.IsZero());
assert(!v32.IsZero());
Vector3 v02 = v0 - v2;
float d0232 = v02.Dot(v32);
float d3210 = v32.Dot(v10);
float d3232 = v32.Dot(v32);
assert(d3232 != 0.f); // Don't call with a zero direction vector.
float d0210 = v02.Dot(v10);
float d1010 = v10.Dot(v10);
float denom = d1010*d3232 - d3210*d3210;
if (denom != 0.f)
d = (d0232*d3210 - d0210*d3232) / denom;
else
d = 0.f;
d2 = (d0232 + d * d3210) / d3232;
}
Vector3 Line::GetPoint(float d) const
{
assert(Direction.IsNormalized());
return Position + d * Direction;
}
Vector3 Line::ClosestPoint(const Vector3 &targetPoint, float &d) const
{
d = Vector3::Dot(targetPoint - Position, Direction);
return GetPoint(d);
}
Vector3 Line::ClosestPoint(const LineSegment &other, float &d, float &d2) const
{
ClosestPointLineLine(Position, Direction, other.A, other.B - other.A, d, d2);
if (d2 < 0.f)
{
d2 = 0.f;
return ClosestPoint(other.A, d);
}
else if (d2 > 1.f)
{
d2 = 1.f;
return ClosestPoint(other.B, d);
}
else
return GetPoint(d);
}
}

View File

@@ -0,0 +1,240 @@
#include <J3ML/Geometry/LineSegment.h>
#include "J3ML/Geometry/Capsule.h"
#include <J3ML/Geometry/Line.h>
namespace J3ML::Geometry {
LineSegment::LineSegment(const Vector3 &a, const Vector3 &b) : A(a), B(b)
{
}
LineSegment::LineSegment() {}
void LineSegment::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
outMin = Vector3::Dot(direction, A);
outMax = Vector3::Dot(direction, B);
if (outMax < outMin)
Swap(outMin, outMax);
}
Vector3 LineSegment::GetPoint(float d) const
{
return (1.f - d) * A + d * B;
}
float LineSegment::Distance(const Vector3 &point, float &d) const
{
/// See Christer Ericson's Real-Time Collision Detection, p.130.
Vector3 closestPoint = ClosestPoint(point, d);
return closestPoint.Distance(point);
}
float LineSegment::DistanceSq(const Vector3 &point) const
{
float d;
/// See Christer Ericson's Real-Time Collision Detection, p.130.
Vector3 closestPoint = ClosestPoint(point, d);
return closestPoint.DistanceSq(point);
}
float LineSegment::DistanceSq(const LineSegment &other) const
{
float d, d2;
ClosestPoint(other, d, d2);
return GetPoint(d).DistanceSq(other.GetPoint(d2));
}
float LineSegment::Distance(const Plane &other) const {
{
float aDist = other.SignedDistance(A);
float bDist = other.SignedDistance(B);
if (aDist * bDist < 0.f)
return 0.f; // There was an intersection, so the distance is zero.
return std::min(std::abs(aDist), std::abs(bDist));
}
}
float LineSegment::Distance(const LineSegment &other, float &d) const { float d2; return Distance(other, d, d2); }
float LineSegment::Distance(const LineSegment &other) const { float d, d2; return Distance(other, d, d2); }
float LineSegment::Distance(const Line &other, float &d) const { float d2; return Distance(other, d, d2); }
float LineSegment::Distance(const Line &other) const { float d, d2; return Distance(other, d, d2); }
float LineSegment::Distance(const Ray &other, float &d) const { float d2; return Distance(other, d, d2); }
float LineSegment::Distance(const Ray &other) const { float d, d2; return Distance(other, d, d2); }
float LineSegment::Distance(const Vector3 &point) const { float d; return Distance(point, d); }
Vector3 LineSegment::ClosestPoint(const Vector3 &point, float &d) const {
Vector3 dir = B - A;
d = Clamp01(Vector3::Dot(point - A, dir) / dir.LengthSquared());
return A + d * dir;
}
Vector3 LineSegment::ClosestPoint(const Line &other, float &d, float &d2) const
{
Line::ClosestPointLineLine(other.Position, other.Direction, A,B - A, d2, d);
if (d < 0.f)
{
d = 0.f;
other.ClosestPoint(A, d2);
return A;
}
else if (d > 1.f)
{
d = 1.f;
other.ClosestPoint(B, d2);
return B;
}
else
return GetPoint(d);
}
Vector3 LineSegment::ClosestPoint(const Ray &other, float &d, float &d2) const {
other.ClosestPoint(*this, d2, d);
return GetPoint(d);
}
Vector3 LineSegment::ClosestPoint(const LineSegment &other, float &d, float &d2) const
{
Vector3 dir = B - A;
Line::ClosestPointLineLine(A, B - A, other.A, other.B - other.A, d, d2);
if (d >= 0.f && d <= 1.f && d2 >= 0.f && d2 <= 1.f)
return A + d * dir;
else if (d >= 0.f && d <= 1.f) // Only d2 is out of bounds.
{
Vector3 p;
if (d2 < 0.f)
{
d2 = 0.f;
p = other.A;
}
else
{
d2 = 1.f;
p = other.B;
}
return ClosestPoint(p, d);
}
else if (d2 >= 0.f && d2 <= 1.f) // Only d is out of bounds.
{
Vector3 p;
if (d < 0.f)
{
d = 0.f;
p = A;
}
else
{
d = 1.f;
p = B;
}
other.ClosestPoint(p, d2);
return p;
}
else // Both u and u2 are out of bounds.
{
Vector3 p;
if (d < 0.f)
{
p = A;
d = 0.f;
}
else
{
p = B;
d = 1.f;
}
Vector3 p2;
if (d2 < 0.f)
{
p2 = other.A;
d2 = 0.f;
}
else
{
p2 = other.B;
d2 = 1.f;
}
float T, T2;
Vector3 closestPoint = ClosestPoint(p2, T);
Vector3 closestPoint2 = other.ClosestPoint(p, T2);
if (closestPoint.DistanceSq(p2) <= closestPoint2.DistanceSq(p))
{
d = T;
return closestPoint;
}
else
{
d2 = T2;
return p;
}
}
}
float LineSegment::Distance(const Ray &other, float &d, float &d2) const {
{
ClosestPoint(other, d, d2);
return GetPoint(d).Distance(other.GetPoint(d2));
}
}
float LineSegment::Distance(const Line &other, float &d, float &d2) const {
Vector3 closestPoint2 = other.ClosestPoint(*this, d, d2);
Vector3 closestPoint = GetPoint(d2);
return closestPoint.Distance(closestPoint2);
}
Vector3 LineSegment::Dir() const {
return (B - A).Normalize();
}
float LineSegment::Length() const {
return A.Distance(B);
}
float LineSegment::LengthSq() const
{
return A.DistanceSq(B);
}
bool LineSegment::Intersects(const LineSegment &segment) const {
return false;
}
Vector3 LineSegment::ExtremePoint(const Vector3 &direction) const {
return Vector3::Dot(direction, B-A) >= 0.f ? B : A;
}
Vector3 LineSegment::ExtremePoint(const Vector3 &direction, float &projectionDistance) const {
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
bool LineSegment::Contains(const Vector3 &point, float distanceThreshold) const {
return ClosestPoint(point).DistanceSq(point) <= distanceThreshold;
}
Vector3 LineSegment::ClosestPoint(const Vector3 &point) const { float d; return ClosestPoint(point, d); }
float LineSegment::Distance(const LineSegment &other, float &d, float &d2) const {
ClosestPoint(other, d, d2);
return GetPoint(d).Distance(other.GetPoint(d2));
}
LineSegment operator*(const Matrix4x4 &transform, const LineSegment &l) {
return LineSegment(transform.Mul(l.A), transform.Mul(l.B));
}
}

443
src/J3ML/Geometry/OBB.cpp Normal file
View File

@@ -0,0 +1,443 @@
#include <J3ML/Geometry/Shape.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
Polyhedron OBB::ToPolyhedron() const {
// Note to maintainer: This function is an exact copy of AABB::ToPolyhedron() and Frustum::ToPolyhedron()
Polyhedron p;
// populate the corners of this OBB
// this will be in the order 0: ---, 1: --+, 2: -+-, 3: -++, 4: +--, 5: +-+, 6: ++-, 7: +++
for (int i = 0; i < 8; ++i)
{
p.v.push_back(CornerPoint(i));
}
// generate the 6 faces of this OBB.
const int faces[6][4] =
{
{0, 1, 3, 2}, // X-
{4, 6, 7, 5}, // X+
{0, 4, 5, 1}, // Y-
{7, 6, 2, 3}, // Y+
{0, 2, 6, 4}, // Z-
{1, 5, 7, 3} // Z+
};
for (int f = 0; f < 6; ++f)
{
Polyhedron::Face face;
for (int v = 0; v < 4; ++v)
{
face.v.push_back(faces[f][v]);
}
//p.f.push_back(face);
}
return p;
}
Sphere OBB::MinimalEnclosingSphere() const {
Sphere s;
s.Position = pos;
s.Radius = HalfDiagonal().Length();
return s;
}
Sphere OBB::MaximalContainedSphere() const {
Sphere s;
s.Position = pos;
s.Radius = r.MinElement();
return s;
}
bool OBB::IsFinite() const {
return pos.IsFinite() && r.IsFinite() && axis[0].IsFinite() && axis[1].IsFinite() && axis[2].IsFinite();
}
bool OBB::IsDegenerate() const
{
return !(r.x > 0.f && r.y > 0.f && r.z > 0.f);
}
Vector3 OBB::CenterPoint() const
{
return pos;
}
Vector3 OBB::PointInside(float x, float y, float z) const
{
assert(0.f <= x && x <= 1.f);
assert(0.f <= y && y <= 1.f);
assert(0.f <= z && z <= 1.f);
return pos + axis[0] * (2.f * r.x * x - r.x)
+ axis[1] * (2.f * r.y * y - r.y)
+ axis[2] * (2.f * r.z * z - r.z);
}
Vector3 OBB::PointInside(const Vector3& pt) const
{
return PointInside(pt.x, pt.y, pt.z);
}
LineSegment OBB::Edge(int edgeIndex) const
{
assert(0 <= edgeIndex && edgeIndex <= 11);
switch(edgeIndex)
{
default: // For release builds where Assert() is disabled, return always the first option if out-of-bounds
case 0: return LineSegment(CornerPoint(0), CornerPoint(1));
case 1: return LineSegment(CornerPoint(0), CornerPoint(2));
case 2: return LineSegment(CornerPoint(0), CornerPoint(4));
case 3: return LineSegment(CornerPoint(1), CornerPoint(3));
case 4: return LineSegment(CornerPoint(1), CornerPoint(5));
case 5: return LineSegment(CornerPoint(2), CornerPoint(3));
case 6: return LineSegment(CornerPoint(2), CornerPoint(6));
case 7: return LineSegment(CornerPoint(3), CornerPoint(7));
case 8: return LineSegment(CornerPoint(4), CornerPoint(5));
case 9: return LineSegment(CornerPoint(4), CornerPoint(6));
case 10: return LineSegment(CornerPoint(5), CornerPoint(7));
case 11: return LineSegment(CornerPoint(6), CornerPoint(7));
}
}
Vector3 OBB::CornerPoint(int cornerIndex) const
{
assert(0 <= cornerIndex && cornerIndex <= 7);
switch(cornerIndex)
{
default: // For release builds, return always the first option if out of bounds
case 0: return pos - r.x * axis[0] - r.y * axis[1] - r.z * axis[2];
case 1: return pos - r.x * axis[0] - r.y * axis[1] + r.z * axis[2];
case 2: return pos - r.x * axis[0] + r.y * axis[1] - r.z * axis[2];
case 3: return pos - r.x * axis[0] + r.y * axis[1] + r.z * axis[2];
case 4: return pos + r.x * axis[0] - r.y * axis[1] - r.z * axis[2];
case 5: return pos + r.x * axis[0] - r.y * axis[1] + r.z * axis[2];
case 6: return pos + r.x * axis[0] + r.y * axis[1] - r.z * axis[2];
case 7: return pos + r.x * axis[0] + r.y * axis[1] + r.z * axis[2];
}
}
Vector3 OBB::ExtremePoint(const Vector3& direction) const
{
Vector3 pt = pos;
pt += axis[0] * (Vector3::Dot(direction, axis[0]) >= 0.f ? r.x : -r.x);
pt += axis[1] * (Vector3::Dot(direction, axis[1]) >= 0.f ? r.y : -r.y);
pt += axis[2] * (Vector3::Dot(direction, axis[2]) >= 0.f ? r.z : -r.z);
return pt;
}
Vector3 OBB::ExtremePoint(const Vector3& direction, float &projectionDistance) const
{
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
void OBB::ProjectToAxis(const Vector3& direction, float& outMin, float& outMax) const
{
float x = std::abs(Vector3::Dot(direction, axis[0]) * r.x);
float y = std::abs(Vector3::Dot(direction, axis[1]) * r.y);
float z = std::abs(Vector3::Dot(direction, axis[2]) * r.z);
float pt = Vector3::Dot(direction, pos);
outMin = pt - x - y - z;
outMax = pt + x + y + z;
}
int OBB::UniqueFaceNormals(Vector3* out) const
{
out[0] = axis[0];
out[1] = axis[1];
out[2] = axis[2];
return 3;
}
int OBB::UniqueEdgeDirections(Vector3* out) const
{
out[0] = axis[0];
out[1] = axis[1];
out[2] = axis[2];
return 3;
}
Vector3 OBB::PointOnEdge(int edgeIndex, float u) const
{
assert(0 <= edgeIndex && edgeIndex <= 11);
assert(0 <= u && u <= 1.f);
edgeIndex = std::clamp(edgeIndex, 0, 11);
Vector3 d = axis[edgeIndex/4] * (2.f * u - 1.f) * r[edgeIndex/4];
switch(edgeIndex)
{
default:
case 0: return pos - r.y * axis[1] - r.z * axis[2] + d;
case 1: return pos - r.y * axis[1] + r.z * axis[2] + d;
case 2: return pos + r.y * axis[1] - r.z * axis[2] + d;
case 3: return pos + r.y * axis[1] + r.z * axis[2] + d;
case 4: return pos - r.x * axis[0] - r.z * axis[2] + d;
case 5: return pos - r.x * axis[0] + r.z * axis[2] + d;
case 6: return pos + r.x * axis[0] - r.z * axis[2] + d;
case 7: return pos + r.x * axis[0] + r.z * axis[2] + d;
case 8: return pos - r.x * axis[0] - r.y * axis[1] + d;
case 9: return pos - r.x * axis[0] + r.y * axis[1] + d;
case 10: return pos + r.x * axis[0] - r.y * axis[1] + d;
case 11: return pos + r.x * axis[0] + r.y * axis[1] + d;
}
}
Vector3 OBB::FaceCenterPoint(int faceIndex) const
{
assert(0 <= faceIndex && faceIndex <= 6);
switch(faceIndex)
{
default:
case 0: return pos - r.x * axis[0];
case 1: return pos + r.x * axis[0];
case 2: return pos - r.y * axis[1];
case 3: return pos + r.y * axis[1];
case 4: return pos - r.z * axis[2];
case 5: return pos + r.z * axis[2];
}
}
Vector3 OBB::FacePoint(int faceIndex, float u, float v) const
{
assert(0 <= faceIndex && faceIndex <= 5);
assert(0 <= u && u <= 1.f);
assert(0 <= v && v <= 1.f);
int uIdx = faceIndex/2;
int vIdx = (faceIndex/2 + 1) % 3;
Vector3 U = axis[uIdx] * (2.f * u - 1.f) * r[uIdx];
Vector3 V = axis[vIdx] * (2.f * v - 1.f) * r[vIdx];
switch(faceIndex)
{
default:
case 0: return pos - r.z * axis[2] + U + V;
case 1: return pos + r.z * axis[2] + U + V;
case 2: return pos - r.x * axis[0] + U + V;
case 3: return pos + r.x * axis[0] + U + V;
case 4: return pos - r.y * axis[1] + U + V;
case 5: return pos + r.y * axis[1] + U + V;
}
}
Plane OBB::FacePlane(int faceIndex) const
{
assert(0 <= faceIndex && faceIndex <= 5);
switch(faceIndex)
{
default:
case 0: return Plane(FaceCenterPoint(0), -axis[0]);
case 1: return Plane(FaceCenterPoint(1), axis[0]);
case 2: return Plane(FaceCenterPoint(2), -axis[1]);
case 3: return Plane(FaceCenterPoint(3), axis[1]);
case 4: return Plane(FaceCenterPoint(4), -axis[2]);
case 5: return Plane(FaceCenterPoint(5), axis[2]);
}
}
void OBB::GetCornerPoints(Vector3 *outPointArray) const
{
assert(outPointArray);
for (int i = 0; i < 8; ++i)
outPointArray[i] = CornerPoint(i);
}
void OBB::GetFacePlanes(Plane *outPlaneArray) const
{
assert(outPlaneArray);
for (int i = 0; i < 6; ++i)
outPlaneArray[i] = FacePlane(i);
}
void OBB::ExtremePointsAlongDirection(const Vector3& dir, const Vector3* pointArray, int numPoints, int &idxSmallest, int &idxLargest, float &smallestD, float &largestD)
{
assert(pointArray || numPoints == 0);
idxSmallest = idxLargest = 0;
smallestD = INFINITY;
largestD = -INFINITY;
for (int i = 0; i < numPoints; ++i)
{
float d = Vector3::Dot(pointArray[i], dir);
if (d < smallestD)
{
smallestD = d;
idxSmallest = i;
}
if (d > largestD)
{
largestD = d;
idxLargest = i;
}
}
}
Vector3 OBB::Size() const {
return r * 2.f;
}
Vector3 OBB::HalfSize() const {
return r;
}
Vector3 OBB::Diagonal() const {
return 2.f * HalfDiagonal();
}
Vector3 OBB::HalfDiagonal() const {
return axis[0] * r[0] + axis[1] * r[1] + axis[2] * r[2];
}
float OBB::Volume() const {
Vector3 size = Size();
return size.x*size.y*size.z;
}
float OBB::SurfaceArea() const {
const Vector3 size = Size();
return 2.f * (size.x*size.y + size.x*size.z + size.y*size.z);
}
template <typename Matrix>
void OBBSetFrom(OBB &obb, const AABB& aabb, const Matrix& m)
{
assert(m.IsColOrthogonal()); // We cannot convert transform an AABB to OBB if it gets sheared in the process.
assert(m.HasUniformScale()); // Nonuniform scale will produce shear as well
obb.pos = m.Mul(aabb.Centroid());
obb.r = aabb.HalfSize();
obb.axis[0] = Vector3(m.GetColumn3(0));
obb.axis[1] = Vector3(m.GetColumn3(1));
obb.axis[2] = Vector3(m.GetColumn3(2));
// If te matrix m contains scaling, propagate the scaling from the axis vectors to the half-length vectors,
// since we want to keep the axis vectors always normalized in our representations.
float matrixScale = obb.axis[0].LengthSquared();
matrixScale = std::sqrt(matrixScale);
obb.r *= matrixScale;
matrixScale = 1.f / matrixScale;
obb.axis[0] *= matrixScale;
obb.axis[1] *= matrixScale;
obb.axis[2] *= matrixScale;
Vector3::Orthonormalize(obb.axis[0], obb.axis[1], obb.axis[2]);
}
template <typename Matrix>
void OBBTransform(OBB& o, const Matrix& transform)
{
o.pos = transform.Mul(o.pos);
o.axis[0] = transform.Mul(o.r.x * o.axis[0]);
o.axis[1] = transform.Mul(o.r.y * o.axis[1]);
o.axis[2] = transform.Mul(o.r.z * o.axis[2]);
o.r.x = o.axis[0].Normalize().x;
o.r.y = o.axis[1].Normalize().y;
o.r.z = o.axis[2].Normalize().z;
}
void OBB::SetFrom(const AABB& aabb, const Matrix3x3 &transform) {
assert(transform.IsColOrthogonal());
OBBSetFrom(*this, aabb, transform);
}
void OBB::SetFrom(const AABB& aabb, const Matrix4x4 &transform) {
assert(transform.IsColOrthogonal3());
OBBSetFrom(*this, aabb, transform);
}
void OBB::SetFrom(const AABB& aabb, const Quaternion &transform) {
OBBSetFrom(*this, aabb, Matrix3x3(transform));
}
void OBB::Transform(const Matrix3x3 &transform) {
assert(transform.IsColOrthogonal());
OBBTransform(*this, transform);
}
void OBB::Transform(const Matrix4x4 &transform) {
assert(transform.IsColOrthogonal3());
OBBTransform(*this, transform);
}
void OBB::Transform(const Quaternion &transform) {
OBBTransform(*this, transform.ToMatrix3x3());
}
/// The implementation of OBB-Plane intersection test follows Christer Ericson's Real-Time Collision Detection, p. 163.
bool OBB::Intersects(const Plane& plane) const {
// Compute the projection interval radius of this OBB onto L(t) = this->pos + x * p.normal;
float t = r[0] * std::abs(Vector3::Dot(plane.Normal, axis[0])) +
r[1] * std::abs(Vector3::Dot(plane.Normal, axis[1])) +
r[2] * std::abs(Vector3::Dot(plane.Normal, axis[2]));
// Compute the distance of this OBB center from the plane.
float s = Vector3::Dot(plane.Normal, pos) - plane.distance;
return std::abs(s) <= t;
}
bool OBB::Intersects(const LineSegment &lineSegment) const {
AABB aabb(Vector3(0.f), Size());
LineSegment l = WorldToLocal() * lineSegment;
return aabb.Intersects(l);
}
Matrix4x4 OBB::WorldToLocal() const
{
Matrix4x4 m = LocalToWorld();
m.InverseOrthonormal();
return m;
}
Matrix4x4 OBB::LocalToWorld() const
{
// To produce a normalized local->world matrix, do the following.
/*
float3x4 m;
vec x = axis[0] * r.x;
vec y = axis[1] * r.y;
vec z = axis[2] * r.z;
m.SetCol(0, 2.f * x);
m.SetCol(1, 2.f * y);
m.SetCol(2, 2.f * z);
m.SetCol(3, pos - x - y - z);
return m;
*/
assert(axis[0].IsNormalized());
assert(axis[1].IsNormalized());
assert(axis[2].IsNormalized());
Matrix4x4 m; ///\todo sse-matrix
m.SetCol(0, axis[0].ptr());
m.SetCol(1, axis[1].ptr());
m.SetCol(2, axis[2].ptr());
Vector3 p = pos - axis[0] * r.x - axis[1] * r.y - axis[2] * r.z;
m.SetCol(3, p.ptr());
assert(m.Row3(0).IsNormalized());
assert(m.Row3(1).IsNormalized());
assert(m.Row3(2).IsNormalized());
assert(m.Col(0).IsPerpendicular(m.Col(1)));
assert(m.Col(0).IsPerpendicular(m.Col(2)));
assert(m.Col(1).IsPerpendicular(m.Col(2)));
return m;
}
}

266
src/J3ML/Geometry/Plane.cpp Normal file
View File

@@ -0,0 +1,266 @@
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
bool Plane::IntersectLinePlane(const Vector3 &planeNormal, float planeD, const Vector3 &linePos, const Vector3 &lineDir, float &t)
{
/* The set of points x lying on a plane is defined by the equation
<planeNormal, x> = planeD.
The set of points x on a line is constructed explicitly by a single parameter t by
x = linePos + t*lineDir.
To solve the intersection of these two objects, substitute the second equation to the first above,
and we get
<planeNormal, linePos + t*lineDir> == planeD, or
<planeNormal, linePos> + t * <planeNormal, lineDir> == planeD, or
t == (planeD - <planeNormal, linePos>) / <planeNormal, lineDir>,
assuming that <planeNormal, lineDir> != 0.
If <planeNormal, lineDir> == 0, then the line is parallel to the plane, and either no intersection occurs, or the whole line
is embedded on the plane, and infinitely many intersections occur. */
float denom = Vector3::Dot(planeNormal, lineDir);
if (std::abs(denom) > 1e-4f)
{
// Compute the distance from the line starting point to the point of intersection.
t = (planeD - Vector3::Dot(planeNormal, linePos)) / denom;
return true;
}
if (denom != 0.f)
{
t = (planeD - Vector3::Dot(planeNormal, linePos)) / denom;
if (std::abs(t) < 1e4f)
return true;
}
t = 0.f;
return Math::EqualAbs(Vector3::Dot(planeNormal, linePos), planeD, 1e-3f);
}
template<typename T>
float Plane_SignedDistance(const Plane &plane, const T &object)
{
float pMin, pMax;
assert(plane.Normal.IsNormalized());
object.ProjectToAxis(plane.Normal, pMin, pMax);
pMin -= plane.distance;
pMax -= plane.distance;
if (pMin * pMax <= 0.f)
return 0.f;
return std::abs(pMin) < std::abs(pMax) ? pMin : pMax;
}
float Plane::SignedDistance(const Vector3 &point) const {
assert(Normal.IsNormalized());
return Normal.Dot(point) - distance;
}
float Plane::SignedDistance(const AABB &aabb) const { return Plane_SignedDistance(*this, aabb); }
float Plane::SignedDistance(const OBB &obb) const { return Plane_SignedDistance(*this, obb); }
float Plane::SignedDistance(const Capsule &capsule) const { return Plane_SignedDistance(*this, capsule); }
float Plane::SignedDistance(const Frustum &frustum) const { return Plane_SignedDistance(*this, frustum); }
float Plane::SignedDistance(const LineSegment &lineSegment) const { return Plane_SignedDistance(*this, lineSegment); }
float Plane::SignedDistance(const Ray &ray) const { return Plane_SignedDistance(*this, ray); }
float Plane::SignedDistance(const Polygon &polygon) const { return Plane_SignedDistance(*this, polygon); }
float Plane::SignedDistance(const Polyhedron &polyhedron) const { return Plane_SignedDistance(*this, polyhedron); }
float Plane::SignedDistance(const Sphere &sphere) const { return Plane_SignedDistance(*this, sphere); }
float Plane::SignedDistance(const Triangle &triangle) const { return Plane_SignedDistance(*this, triangle); }
float Plane::Distance(const Vector3 &point) const {
std::abs(SignedDistance(point));
}
float Plane::Distance(const LineSegment &lineSegment) const
{
return lineSegment.Distance(*this);
}
float Plane::Distance(const Sphere &sphere) const
{
return std::max(0.f, Distance(sphere.Position) - sphere.Radius);
}
float Plane::Distance(const Capsule &capsule) const
{
return std::max(0.f, Distance(capsule.l) - capsule.r);
}
Plane::Plane(const Line &line, const Vector3 &normal) {
Vector3 perpNormal = normal - normal.ProjectToNorm(line.Direction);
Set(line.Position, perpNormal.Normalize());
}
void Plane::Set(const Vector3 &v1, const Vector3 &v2, const Vector3 &v3) {
Normal = (v2-v1).Cross(v3-v1);
float len = Normal.Length();
assert(len > 1e-10f);
Normal /= len;
assert(Normal.IsNormalized());
distance = Normal.Dot(v1);
}
void Plane::Set(const Vector3 &point, const Vector3 &normal_) {
Normal = normal_;
assert(Normal.IsNormalized());
distance = point.Dot(Normal);
#ifdef MATH_ASSERT_CORRECTNESS
assert1(EqualAbs(SignedDistance(point), 0.f, 0.01f), SignedDistance(point));
assert1(EqualAbs(SignedDistance(point + normal_), 1.f, 0.01f), SignedDistance(point + normal_));
#endif
}
Plane::Plane(const Vector3 &v1, const Vector3 &v2, const Vector3 &v3) {
Set(v1, v2, v3);
}
Plane::Plane(const Vector3 &pos, const Vector3 &norm)
: Shape(), Position(pos), Normal(norm) {}
bool Plane::Intersects(J3ML::Geometry::Ray ray, float *dist) const {
float t;
bool success = IntersectLinePlane(Normal, this->distance, ray.Origin, ray.Direction, t);
if (dist)
*dist = t;
return success && t >= 0.f;
}
bool Plane::Intersects(const Line &line, float *dist) const
{
float t;
bool intersects = IntersectLinePlane(Normal, this->distance, line.Position, line.Direction, t);
if (dist)
*dist = t;
return intersects;
}
bool Plane::Intersects(const LineSegment &lineSegment, float *dist) const
{
float t;
bool success = IntersectLinePlane(Normal, this->distance, lineSegment.A, lineSegment.Dir(), t);
const float lineSegmentLength = lineSegment.Length();
if (dist)
*dist = t / lineSegmentLength;
return success && t >= 0.f && t <= lineSegmentLength;
}
bool Plane::Intersects(const Sphere &sphere) const
{
return Distance(sphere.Position) <= sphere.Radius;
}
bool Plane::Intersects(const Capsule &capsule) const
{
return capsule.Intersects(*this);
}
/// The Plane-AABB intersection is implemented according to Christer Ericson's Real-Time Collision Detection, p.164. [groupSyntax]
bool Plane::Intersects(const AABB &aabb) const
{
Vector3 c = aabb.Centroid();
Vector3 e = aabb.HalfDiagonal();
// Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
float r = e[0]*std::abs(Normal[0]) + e[1]*std::abs(Normal[1]) + e[2]*std::abs(Normal[2]);
// Compute the distance of the box center from plane.
//float s = Dot(normal, c) - d;
float s = Vector3::Dot(Normal, c) - distance; ///\todo Use the above form when Plane is SSE'ized.
return std::abs(s) <= r;
}
bool Plane::Intersects(const OBB &obb) const
{
return obb.Intersects(*this);
}
bool Plane::Intersects(const Triangle &triangle) const
{
float a = SignedDistance(triangle.V0);
float b = SignedDistance(triangle.V1);
float c = SignedDistance(triangle.V2);
return (a*b <= 0.f || a*c <= 0.f);
}
bool Plane::Intersects(const Frustum &frustum) const
{
bool sign = IsOnPositiveSide(frustum.CornerPoint(0));
for(int i = 1; i < 8; ++i)
if (sign != IsOnPositiveSide(frustum.CornerPoint(i)))
return true;
return false;
}
bool Plane::IsOnPositiveSide(const Vector3 &point) const {
return SignedDistance(point) >= 0.f;
}
bool Plane::Intersects(const Polyhedron &polyhedron) const
{
if (polyhedron.NumVertices() == 0)
return false;
bool sign = IsOnPositiveSide(polyhedron.Vertex(0));
for(int i = 1; i < polyhedron.NumVertices(); ++i)
if (sign != IsOnPositiveSide(polyhedron.Vertex(i)))
return true;
return false;
}
Vector3 Plane::Project(const Vector3 &point) const
{
Vector3 projected = point - (Normal.Dot(point) - distance) * Normal;
return projected;
}
LineSegment Plane::Project(const LineSegment &lineSegment) {
return LineSegment(Project(lineSegment.A), Project(lineSegment.B));
}
/*int Plane::Intersects(const Circle &circle, Vector3 *pt1, Vector3 *pt2) const
{
Line line;
bool planeIntersects = Intersects(circle.ContainingPlane(), &line);
if (!planeIntersects)
return false;
// Offset both line and circle position so the circle origin is at center.
line.pos -= circle.pos;
float a = 1.f;
float b = 2.f * Dot(line.pos, line.dir);
float c = line.pos.LengthSq() - circle.r * circle.r;
float r1, r2;
int numRoots = Polynomial::SolveQuadratic(a, b, c, r1, r2);
if (numRoots >= 1 && pt1)
*pt1 = circle.pos + line.GetPoint(r1);
if (numRoots >= 2 && pt2)
*pt2 = circle.pos + line.GetPoint(r2);
return numRoots;
}
int Plane::Intersects(const Circle &circle) const
{
return Intersects(circle, 0, 0);
}*/
}

View File

@@ -0,0 +1,603 @@
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Triangle.h>
#include "J3ML/Geometry/Plane.h"
#include "J3ML/Geometry/Line.h"
#include <J3ML/Algorithm/GJK.h>
namespace J3ML::Geometry {
AABB Polygon::MinimalEnclosingAABB() const {
AABB aabb;
aabb.SetNegativeInfinity();
for(int i = 0; i < NumVertices(); ++i)
aabb.Enclose(Vertex(i));
return aabb;
}
Vector3 Polygon::ExtremePoint(const Vector3 &direction, float &projectionDistance) const
{
Vector3 mostExtreme = Vector3::NaN;
projectionDistance = -INFINITY;
for(int i = 0; i < NumVertices(); ++i)
{
Vector3 pt = Vertex(i);
float d = Vector3::Dot(direction, pt);
if (d > projectionDistance)
{
projectionDistance = d;
mostExtreme = pt;
}
}
return mostExtreme;
}
Vector3 Polygon::ExtremePoint(const Vector3 &direction) const
{
float projectionDistance;
return ExtremePoint(direction, projectionDistance);
}
void Polygon::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
///\todo Optimize!
Vector3 minPt = ExtremePoint(-direction);
Vector3 maxPt = ExtremePoint(direction);
outMin = Vector3::Dot(minPt, direction);
outMax = Vector3::Dot(maxPt, direction);
}
Vector3 Polygon::Vertex(int vertexIndex) const {
assert(vertexIndex >= 0);
assert(vertexIndex < (int) vertices.size());
return vertices[vertexIndex];
}
int Polygon::NumVertices() const {
return (int)vertices.size();
}
bool Polygon::IsPlanar(float epsilonSq) const
{
if (vertices.empty())
return false;
if (vertices.size() <= 3)
return true;
Vector3 normal = (Vector3(vertices[1])-Vector3(vertices[0])).Cross(Vector3(vertices[2])-Vector3(vertices[0]));
float lenSq = normal.LengthSquared();
for(size_t i = 3; i < vertices.size(); ++i)
{
float d = normal.Dot(Vector3(vertices[i])-Vector3(vertices[0]));
if (d*d > epsilonSq * lenSq)
return false;
}
return true;
}
Vector3 Polygon::BasisU() const
{
if (vertices.size() < 2)
return Vector3::Right;
Vector3 u = (Vector3)vertices[1] - (Vector3)vertices[0];
u = u.Normalize(); // Always succeeds, even if u was zero (generates (1,0,0)).
return u;
}
Vector3 Polygon::BasisV() const
{
if (vertices.size() < 2)
return Vector3::Down;
return Vector3::Cross(PlaneCCW().Normal, BasisU()).Normalize();
}
Plane Polygon::PlaneCCW() const
{
if (vertices.size() > 3)
{
Plane plane;
for(size_t i = 0; i < vertices.size()-2; ++i)
for(size_t j = i+1; j < vertices.size()-1; ++j)
{
Vector3 pij = Vector3(vertices[j])-Vector3(vertices[i]);
for(size_t k = j+1; k < vertices.size(); ++k)
{
plane.Normal = pij.Cross(Vector3(vertices[k])-Vector3(vertices[i]));
float lenSq = plane.Normal.LengthSquared();
if (lenSq > 1e-8f)
{
plane.Normal /= std::sqrt(lenSq);
plane.distance = plane.Normal.Dot(Vector3(vertices[i]));
return plane;
}
}
}
// warn("Polygon contains %d points, but they are all collinear! Cannot form a plane for the Polygon using three points!", (int)p.size());
// Polygon contains multiple points, but they are all collinear.
// Pick an arbitrary plane along the line as the polygon plane (as if the polygon had only two points)
Vector3 dir = (Vector3(vertices[1])-Vector3(vertices[0])).Normalize();
return Plane(Line(vertices[0], dir), dir.Perpendicular());
}
if (vertices.size() == 3)
return Plane(vertices[0], vertices[1], vertices[2]);
if (vertices.size() == 2)
{
Vector3 dir = (Vector3(vertices[1])-Vector3(vertices[0])).Normalize();
return Plane(Line(vertices[0], dir), dir.Perpendicular());
}
if (vertices.size() == 1)
return Plane(vertices[0], Vector3(0,1,0));
return Plane();
}
Vector2 Polygon::MapTo2D(int i) const
{
assert(i >= 0);
assert(i < (int)vertices.size());
return MapTo2D(vertices[i]);
}
Vector2 Polygon::MapTo2D(const Vector3 &point) const
{
assert(!vertices.empty());
Vector3 basisU = BasisU();
Vector3 basisV = BasisV();
Vector3 pt = point - vertices[0];
return Vector2(Vector3::Dot(pt, basisU), Vector3::Dot(pt, basisV));
}
Vector3 Polygon::MapFrom2D(const Vector2 &point) const
{
assert(!vertices.empty());
return (Vector3)vertices[0] + point.x * BasisU() + point.y * BasisV();
}
// A(u) = a1 + u * (a2-a1).
// B(v) = b1 + v * (b2-b1).
// Returns (u,v).
bool IntersectLineLine2D(const Vector2 &a1, const Vector2 &a2, const Vector2 &b1, const Vector2 &b2, Vector2 &out)
{
float u = (b2.x - b1.x)*(a1.y - b1.y) - (b2.y - b1.y)*(a1.x - b1.x);
float v = (a2.x - a1.x)*(a1.y - b1.y) - (a2.y - a1.y)*(a1.x - b1.x);
float det = (b2.y - b1.y)*(a2.x - a1.x) - (b2.x - b1.x)*(a2.y - a1.y);
if (std::abs(det) < 1e-4f)
return false;
det = 1.f / det;
out.x = u * det;
out.y = v * det;
return true;
}
bool IntersectLineSegmentLineSegment2D(const Vector2 &a1, const Vector2 &a2, const Vector2 &b1, const Vector2 &b2, Vector2 &out)
{
bool ret = IntersectLineLine2D(a1, a2, b1, b2, out);
return ret && out.x >= 0.f && out.x <= 1.f && out.y >= 0.f && out.y <= 1.f;
}
/// Returns true if poly[i+1] is an ear.
/// Precondition: i+2 == j (mod poly.size()).
bool IsAnEar(const std::vector<Vector2> &poly, int i, int j)
{
Vector2 dummy;
int x = (int)poly.size()-1;
for(int y = 0; y < i; ++y)
{
if (IntersectLineSegmentLineSegment2D(poly[i], poly[j], poly[x], poly[y], dummy))
return false;
x = y;
}
x = j+1;
for(int y = x+1; y < (int)poly.size(); ++y)
{
if (IntersectLineSegmentLineSegment2D(poly[i], poly[j], poly[x], poly[y], dummy))
return false;
x = y;
}
return true;
}
bool Polygon::Contains(const Polygon &worldSpacePolygon, float polygonThickness) const
{
for(int i = 0; i < worldSpacePolygon.NumVertices(); ++i)
if (!Contains(worldSpacePolygon.Vertex(i), polygonThickness))
return false;
return true;
}
bool Polygon::Contains(const Vector3 &worldSpacePoint, float polygonThicknessSq) const
{
// Implementation based on the description from http://erich.realtimerendering.com/ptinpoly/
if (vertices.size() < 3)
return false;
Vector3 basisU = BasisU();
Vector3 basisV = BasisV();
assert(basisU.IsNormalized());
assert(basisV.IsNormalized());
assert(basisU.IsPerpendicular(basisV));
assert(basisU.IsPerpendicular(PlaneCCW().Normal));
assert(basisV.IsPerpendicular(PlaneCCW().Normal));
Vector3 normal = basisU.Cross(basisV);
// float lenSq = normal.LengthSq(); ///\todo Could we treat basisU and basisV unnormalized here?
float dot = normal.Dot(Vector3(vertices[0]) - worldSpacePoint);
if (dot*dot > polygonThicknessSq)
return false; // The point is not even within the plane of the polygon - can't be contained.
int numIntersections = 0;
const float epsilon = 1e-4f;
// General strategy: transform all points on the polygon onto 2D face plane of the polygon, where the target query point is
// centered to lie in the origin.
// If the test ray (0,0) -> (+inf, 0) intersects exactly an odd number of polygon edge segments, then the query point must have been
// inside the polygon. The test ray is chosen like that to avoid all extra per-edge computations.
// This method works for both simple and non-simple (self-intersecting) polygons.
Vector3 vt = Vector3(vertices.back()) - worldSpacePoint;
Vector2 p0 = Vector2(Vector3::Dot(vt, basisU), Vector3::Dot(vt, basisV));
if (std::abs(p0.y) < epsilon)
p0.y = -epsilon; // Robustness check - if the ray (0,0) -> (+inf, 0) would pass through a vertex, move the vertex slightly.
for(int i = 0; i < (int)vertices.size(); ++i)
{
vt = Vector3(vertices[i]) - worldSpacePoint;
Vector2 p1 = Vector2(Vector3::Dot(vt, basisU), Vector3::Dot(vt, basisV));
if (std::abs(p1.y) < epsilon)
p1.y = -epsilon; // Robustness check - if the ray (0,0) -> (+inf, 0) would pass through a vertex, move the vertex slightly.
if (p0.y * p1.y < 0.f) // If the line segment p0 -> p1 straddles the line x=0, it could intersect the ray (0,0) -> (+inf, 0)
{
if (std::min(p0.x, p1.x) > 0.f) // If both x-coordinates are positive, then there certainly is an intersection with the ray.
++numIntersections;
else if (std::max(p0.x, p1.x) > 0.f) // If one of them is positive, there could be an intersection. (otherwise both are negative and they can't intersect ray)
{
// P = p0 + t*(p1-p0) == (x,0)
// p0.x + t*(p1.x-p0.x) == x
// p0.y + t*(p1.y-p0.y) == 0
// t == -p0.y / (p1.y - p0.y)
// Test whether the lines (0,0) -> (+inf,0) and p0 -> p1 intersect at a positive X-coordinate?
Vector2 d = p1 - p0;
if (d.y != 0.f)
{
float t = -p0.y / d.y; // The line segment parameter, t \in [0,1] forms the line segment p0->p1.
float x = p0.x + t * d.x; // The x-coordinate of intersection with the ray.
if (t >= 0.f && t <= 1.f && x > 0.f)
++numIntersections;
}
}
}
p0 = p1;
}
return numIntersections % 2 == 1;
}
bool Polygon::Contains(const LineSegment &worldSpaceLineSegment, float polygonThickness) const
{
if (vertices.size() < 3)
return false;
Plane plane = PlaneCCW();
if (plane.Distance(worldSpaceLineSegment.A) > polygonThickness ||
plane.Distance(worldSpaceLineSegment.B) > polygonThickness)
return false;
// For robustness, project onto the polygon plane.
LineSegment l = plane.Project(worldSpaceLineSegment);
if (!Contains(l.A) || !Contains(l.B))
return false;
for(int i = 0; i < (int)vertices.size(); ++i)
if (plane.Project(Edge(i)).Intersects(l))
return false;
return true;
}
bool Polygon::Contains(const Triangle &worldSpaceTriangle, float polygonThickness) const
{
return Contains(worldSpaceTriangle.Edge(0), polygonThickness) &&
Contains(worldSpaceTriangle.Edge(1), polygonThickness) &&
Contains(worldSpaceTriangle.Edge(2), polygonThickness);
}
/** The implementation of this function is based on the paper
"Kong, Everett, Toussant. The Graham Scan Triangulates Simple Polygons."
See also p. 772-775 of Geometric Tools for Computer Graphics.
The running time of this function is O(n^2). */
std::vector<Triangle> Polygon::Triangulate() const
{
assert(IsPlanar());
// assume1(IsPlanar(), this->SerializeToString()); // TODO: enable
std::vector<Triangle> t;
// Handle degenerate cases.
if (NumVertices() < 3)
return t;
if (NumVertices() == 3)
{
t.push_back(Triangle(Vertex(0), Vertex(1), Vertex(2)));
return t;
}
std::vector<Vector2> p2d;
std::vector<int> polyIndices;
for(int v = 0; v < NumVertices(); ++v)
{
p2d.push_back(MapTo2D(v));
polyIndices.push_back(v);
}
// Clip ears of the polygon until it has been reduced to a triangle.
int i = 0;
int j = 1;
int k = 2;
size_t numTries = 0; // Avoid creating an infinite loop.
while(p2d.size() > 3 && numTries < p2d.size())
{
if (Vector2::OrientedCCW(p2d[i], p2d[j], p2d[k]) && IsAnEar(p2d, i, k))
{
// The vertex j is an ear. Clip it off.
t.push_back(Triangle(vertices[polyIndices[i]], vertices[polyIndices[j]], vertices[polyIndices[k]]));
p2d.erase(p2d.begin() + j);
polyIndices.erase(polyIndices.begin() + j);
// The previous index might now have become an ear. Move back one index to see if so.
if (i > 0)
{
i = (i + (int)p2d.size() - 1) % p2d.size();
j = (j + (int)p2d.size() - 1) % p2d.size();
k = (k + (int)p2d.size() - 1) % p2d.size();
}
numTries = 0;
}
else
{
// The vertex at j is not an ear. Move to test next vertex.
i = j;
j = k;
k = (k+1) % p2d.size();
++numTries;
}
}
assert(p2d.size() == 3);
if (p2d.size() > 3) // If this occurs, then the polygon is NOT counter-clockwise oriented.
return t;
/*
{
// For conveniency, create a copy that has the winding order fixed, and triangulate that instead.
// (Causes a large performance hit!)
Polygon p2 = *this;
for(size_t i = 0; i < p2.p.size()/2; ++i)
std::swap(p2.p[i], p2.p[p2.p.size()-1-i]);
return p2.Triangulate();
}
*/
// Add the last poly.
t.push_back(Triangle(vertices[polyIndices[0]], vertices[polyIndices[1]], vertices[polyIndices[2]]));
return t;
}
bool Polygon::Intersects(const Capsule &capsule) const {
///@todo Optimize.
std::vector<Triangle> tris = Triangulate();
for(size_t i = 0; i < tris.size(); ++i)
if (tris[i].Intersects(capsule))
return true;
return false;
}
bool Polygon::Intersects(const Line &line) const {
float d;
if (!PlaneCCW().Intersects(line, &d))
return false;
return Contains(line.GetPoint(d));
}
bool Polygon::Intersects(const Ray &ray) const
{
float d;
if (!PlaneCCW().Intersects(ray, &d))
return false;
return Contains(ray.GetPoint(d));
}
bool Polygon::Intersects2D(const LineSegment &localSpaceLineSegment) const
{
if (vertices.size() < 3)
return false;
const Vector3 basisU = BasisU();
const Vector3 basisV = BasisV();
const Vector3 origin = vertices[0];
LineSegment edge;
edge.A = Vector3(Vector3::Dot(vertices.back(), basisU), Vector3::Dot(vertices.back(), basisV), 0); // map to 2D
for (int i = 0; i < (int)vertices.size(); ++i)
{
edge.B = Vector3(Vector3::Dot(vertices[i], basisU), Vector3::Dot(vertices[i], basisV), 0); // map to 2D
if (edge.Intersects(localSpaceLineSegment))
return true;
edge.A = edge.B;
}
// The line segment did not intersect with any of the polygon edges, so either the whole line segment is inside
// the polygon, or it is fully outside the polygon. Test one point of the line segment to determine which.
Vector2 xy = {
localSpaceLineSegment.A.x,
localSpaceLineSegment.A.y
};
return Contains(MapFrom2D(xy));
}
bool Polygon::Intersects(const LineSegment &lineSegment) const
{
Plane plane = PlaneCCW();
// Compute line-plane intersection (unroll Plane::IntersectLinePlane())
float denom = Vector3::Dot(plane.Normal, lineSegment.B - lineSegment.A);
if (std::abs(denom) < 1e-4f) // The plane of the polygon and the line are planar? Do the test in 2D.
return Intersects2D(LineSegment(Vector3(MapTo2D(lineSegment.A), 0), Vector3(MapTo2D(lineSegment.B), 0)));
// The line segment properly intersects the plane of the polygon, so there is exactly one
// point of intersection between the plane of the polygon and the line segment. Test that intersection point against
// the line segment end points.
float t = (plane.distance - Vector3::Dot(plane.Normal, lineSegment.A)) / denom;
if (t < 0.f || t > 1.f)
return false;
return Contains(lineSegment.GetPoint(t));
}
bool Polygon::Intersects(const Plane &plane) const
{
// Project the points of this polygon onto the 1D axis of the plane normal.
// If there are points on both sides of the plane, then the polygon intersects the plane.
float minD = INFINITY;
float maxD = -INFINITY;
for(size_t i = 0; i < vertices.size(); ++i)
{
float d = plane.SignedDistance(vertices[i]);
minD = std::min(minD, d);
maxD = std::max(maxD, d);
}
// Allow a very small epsilon tolerance.
return minD <= 1e-4f && maxD >= -1e-4f;
}
bool Polygon::ConvexIntersects(const AABB &aabb) const
{
return Algorithms::GJKIntersect(*this, aabb);
}
bool Polygon::ConvexIntersects(const OBB &obb) const
{
return Algorithms::GJKIntersect(*this, obb);
}
bool Polygon::ConvexIntersects(const Frustum &frustum) const
{
return Algorithms::GJKIntersect(*this, frustum);
}
template<typename Convex /* = AABB, OBB, Frustum. */>
bool Convex_Intersects_Polygon(const Convex &c, const Polygon &p)
{
LineSegment l;
l.A = p.vertices.back();
for(size_t i = 0; i < p.vertices.size(); ++i)
{
l.B = p.vertices[i];
if (c.Intersects(l))
return true;
l.A = l.B;
}
// Check all the edges of the convex shape against the polygon.
for(int i = 0; i < c.NumEdges(); ++i)
{
l = c.Edge(i);
if (p.Intersects(l))
return true;
}
return false;
}
bool Polygon::Intersects(const AABB &aabb) const
{
// Because GJK test is so fast, use that as an early-out. (computes intersection between the convex hull of this poly, and the aabb)
bool convexIntersects = ConvexIntersects(aabb);
if (!convexIntersects)
return false;
return Convex_Intersects_Polygon(aabb, *this);
}
bool Polygon::Intersects(const OBB &obb) const
{
// Because GJK test is so fast, use that as an early-out. (computes intersection between the convex hull of this poly, and the obb)
bool convexIntersects = ConvexIntersects(obb);
if (!convexIntersects)
return false;
return Convex_Intersects_Polygon(obb, *this);
}
bool Polygon::Intersects(const Frustum &frustum) const
{
// Because GJK test is so fast, use that as an early-out. (computes intersection between the convex hull of this poly, and the frustum)
bool convexIntersects = ConvexIntersects(frustum);
if (!convexIntersects)
return false;
return Convex_Intersects_Polygon(frustum, *this);
}
LineSegment Polygon::Edge(int i) const
{
if (vertices.empty())
return LineSegment(Vector3::NaN, Vector3::NaN);
if (vertices.size() == 1)
return LineSegment(vertices[0], vertices[0]);
return LineSegment(vertices[i], vertices[(i+1)%vertices.size()]);
}
Vector3 Polygon::ClosestPoint(const Vector3 &point) const
{
assert(IsPlanar());
std::vector<Triangle> tris = Triangulate();
Vector3 closestPt = Vector3::NaN;
float closestDist = FLT_MAX;
for(size_t i = 0; i < tris.size(); ++i)
{
Vector3 pt = ((Triangle)tris[i]).ClosestPoint(point);
float d = pt.DistanceSq(point);
if (d < closestDist)
{
closestPt = pt;
closestDist = d;
}
}
return closestPt;
}
Vector3 Polygon::ClosestPoint(const LineSegment &lineSegment) const
{
return ClosestPoint(lineSegment, 0);
}
Vector3 Polygon::ClosestPoint(const LineSegment &lineSegment, Vector3 *lineSegmentPt) const
{
std::vector<Triangle> tris = Triangulate();
Vector3 closestPt = Vector3::NaN;
Vector3 closestLineSegmentPt = Vector3::NaN;
float closestDist = FLT_MAX;
for(size_t i = 0; i < tris.size(); ++i)
{
Vector3 lineSegPt;
Vector3 pt = ((Triangle)tris[i]).ClosestPoint(lineSegment, &lineSegPt);
float d = pt.DistanceSq(lineSegPt);
if (d < closestDist)
{
closestPt = pt;
closestLineSegmentPt = lineSegPt;
closestDist = d;
}
}
if (lineSegmentPt)
*lineSegmentPt = closestLineSegmentPt;
return closestPt;
}
}

View File

@@ -0,0 +1,681 @@
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/LineSegment.h>
#include "J3ML/Geometry/Ray.h"
#include "J3ML/Geometry/Line.h"
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Capsule.h>
#include <set>
#include <cfloat>
namespace J3ML::Geometry
{
int Polyhedron::ExtremeVertex(const Vector3 &direction) const
{
int mostExtreme = -1;
float mostExtremeDist = -FLT_MAX;
for(int i = 0; i < NumVertices(); ++i)
{
float d = Vector3::Dot(direction, Vertex(i));
if (d > mostExtremeDist)
{
mostExtremeDist = d;
mostExtreme = i;
}
}
return mostExtreme;
}
Vector3 Polyhedron::ExtremePoint(const Vector3 &direction) const
{
return Vertex(ExtremeVertex(direction));
}
void Polyhedron::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
///\todo Optimize!
Vector3 minPt = ExtremePoint(-direction);
Vector3 maxPt = ExtremePoint(direction);
outMin = Vector3::Dot(minPt, direction);
outMax = Vector3::Dot(maxPt, direction);
}
int Polyhedron::NumEdges() const
{
int numEdges = 0;
for(size_t i = 0; i < f.size(); ++i)
numEdges += (int)f[i].v.size();
return numEdges / 2;
}
AABB Polyhedron::MinimalEnclosingAABB() const {
AABB aabb;
aabb.SetNegativeInfinity();
for (int i = 0; i < NumVertices(); ++i)
aabb.Enclose(Vertex(i));
return aabb;
}
Vector3 Polyhedron::Vertex(int vertexIndex) const {
return v[vertexIndex];
}
LineSegment Polyhedron::Edge(int edgeIndex) const
{
assert(edgeIndex >= 0);
std::vector<LineSegment> edges = Edges();
assert(edgeIndex < (int)edges.size());
return edges[edgeIndex];
}
Polygon Polyhedron::FacePolygon(int faceIndex) const
{
Polygon p;
assert(faceIndex >= 0);
assert(faceIndex < (int)f.size());
p.vertices.reserve(f[faceIndex].v.size());
for(size_t i = 0; i < f[faceIndex].v.size(); ++i)
p.vertices.push_back(Vertex(f[faceIndex].v[i]));
return p;
}
std::vector<LineSegment> Polyhedron::Edges() const
{
std::vector<std::pair<int, int> > edges = EdgeIndices();
std::vector<LineSegment> edgeLines;
edgeLines.reserve(edges.size());
for(size_t i = 0; i < edges.size(); ++i)
edgeLines.push_back(LineSegment(Vertex(edges[i].first), Vertex(edges[i].second)));
return edgeLines;
}
std::vector<std::pair<int, int> > Polyhedron::EdgeIndices() const
{
std::set<std::pair<int, int> > uniqueEdges;
for(int i = 0; i < NumFaces(); ++i)
{
assert(f[i].v.size() >= 3);
if (f[i].v.size() < 3)
continue; // Degenerate face with less than three vertices, skip!
int x = f[i].v.back();
for(size_t j = 0; j < f[i].v.size(); ++j)
{
int y = f[i].v[j];
uniqueEdges.insert(std::make_pair(std::min(x, y), std::max(x, y)));
x = y;
}
}
std::vector<std::pair<int, int> >edges;
edges.insert(edges.end(), uniqueEdges.begin(), uniqueEdges.end());
return edges;
}
bool Polyhedron::Contains(const Vector3 &point) const {
if (v.size() <= 3) {
if (v.size() == 3)
return Triangle(Vector3(v[0]), Vector3(v[1]), Vector3(v[2])).Contains(point);
else if (v.size() == 2)
return LineSegment(Vector3(v[0]), Vector3(v[1])).Contains(point);
else if (v.size() == 1)
return Vector3(v[0]).Equals(point);
else
return false;
}
int bestNumIntersections = 0;
float bestFaceContainmentDistance = 0.f;
// For N > 4 Order Polyhedra
// General strategy: pick a ray from the query point to a random direction, and count the number of times the ray intersects a face.
// If it intersects an odd number of times, the given point must have been inside the polyhedron.
// But unfortunately for numerical stability, we must be smart with the choice of the ray direction. If we pick a ray direction
// which exits the polyhedron precisely at a vertex, or at an edge of two adjoining faces, we might count those twice. Therefore
// Try to pick a ray direction that passes safely through a center of some face. If we detect that there was a tricky face that
// the ray passed too close to an edge, we have no choice but to pick another ray direction and hope that it passes through
// the polyhedron in a safe manner.
// Loop through each face to choose the ray direction. If our choice was good, we only do this once and the algorithm
// after the first iteration at j == 0. If not, we iterate more faces of the polyhedron to try to find one that is safe for
// ray-polyhedron examination.
for (int j = 0; j < (int)f.size(); ++j)
{
if (f[j].v.size() < 3)
continue;
// Accumulate how many times the ray intersected a face of the polyhedron.
int numIntersections = 0;
// Track a pseudo-distance of the closest edge of a face that the ray passed through. If this distance ends up being too small,
// we decide not to trust the result we got, and proceed to another iteration of j, hoping to guess a better-behaving direction
// for the test ray.
float faceContainmentDistance = INFINITY;
Vector3 Dir = ((Vector3)v[f[j].v[0]] + (Vector3)v[f[j].v[1]] + (Vector3)v[f[j].v[2]]) * 0.333333333333f - point;
//if (Dir.Normalize() <= 0.f)
//continue;
Ray r(Vector3(), Dir);
for (int i = 0; i < (int)f.size(); ++i)
{
Plane p((Vector3)v[f[i].v[0]] - point, (Vector3)v[f[i].v[1]] - point, (Vector3)v[f[i].v[2]] - point);
float d;
// Find the intersection of the plane and the ray.
if (p.Intersects(r, &d))
{
float containmentDistance2D = FaceContainmentDistance2D(i, r.GetPoint(d) + point);
if (containmentDistance2D >= 0.f)
++numIntersections;
faceContainmentDistance = std::min(faceContainmentDistance, std::abs(containmentDistance2D));
}
}
if (faceContainmentDistance > 1e-2f) // The nearest edge was far enough, we conclude the result is believable.
return (numIntersections % 2) == 1;
else if (faceContainmentDistance >= bestFaceContainmentDistance)
{
// The ray passed too close to a face edge. Remember this result, but proceed to another test iteration to see if we can
// find a more plausible test ray.
bestNumIntersections = numIntersections;
bestFaceContainmentDistance = faceContainmentDistance;
}
}
// We tested rays through each face of the polyhedron, but all rays passed too close to edges of the polyhedron faces. Return
// the result from the test that was farthest to any of the face edges.
return (bestNumIntersections % 2) == 1;
}
float Polyhedron::FaceContainmentDistance2D(int faceIndex, const Vector3 &worldSpacePoint, float polygonThickness) const
{
// N.B. This implementation is a duplicate of Polygon::Contains, but adapted to avoid dynamic memory allocation
// related to converting the face of a Polyhedron to a Polygon object.
// Implementation based on the description from http://erich.realtimerendering.com/ptinpoly/
const Face &face = f[faceIndex];
const std::vector<int> &vertices = face.v;
if (vertices.size() < 3)
return -INFINITY; // Certainly not intersecting, so return -inf denoting "strongly not contained"
Plane p = FacePlane(faceIndex);
if (FacePlane(faceIndex).Distance(worldSpacePoint) > polygonThickness)
return -INFINITY;
int numIntersections = 0;
Vector3 basisU = (Vector3)v[vertices[1]] - (Vector3)v[vertices[0]];
basisU.Normalize();
Vector3 basisV = Vector3::Cross(p.Normal, basisU).Normalize();
assert(basisU.IsNormalized());
assert(basisV.IsNormalized());
assert(basisU.IsPerpendicular(basisV));
assert(basisU.IsPerpendicular(p.Normal));
assert(basisV.IsPerpendicular(p.Normal));
// Tracks a pseudo-distance of the point to the ~nearest edge of the polygon. If the point is very close to the polygon
// edge, this is very small, and it's possible that due to numerical imprecision we cannot rely on the result in higher-level
// algorithms that invoke this function.
float faceContainmentDistance = INFINITY;
const float epsilon = 1e-4f;
Vector3 vt = Vector3(v[vertices.back()]) - worldSpacePoint;
Vector2 p0 = Vector2(Vector3::Dot(vt, basisU), Vector3::Dot(vt, basisV));
if (std::abs(p0.y) < epsilon)
p0.y = -epsilon; // Robustness check - if the ray (0,0) -> (+inf, 0) would pass through a vertex, move the vertex slightly.
for(size_t i = 0; i < vertices.size(); ++i)
{
vt = Vector3(v[vertices[i]]) - worldSpacePoint;
Vector2 p1 = Vector2(Vector3::Dot(vt, basisU), Vector3::Dot(vt, basisV));
if (std::abs(p1.y) < epsilon)
p1.y = -epsilon; // Robustness check - if the ray (0,0) -> (+inf, 0) would pass through a vertex, move the vertex slightly.
if (p0.y * p1.y < 0.f)
{
float minX = std::min(p0.x, p1.x);
if (minX > 0.f)
{
faceContainmentDistance = std::min(faceContainmentDistance, minX);
++numIntersections;
}
else if (std::max(p0.x, p1.x) > 0.f)
{
// P = p0 + t*(p1-p0) == (x,0)
// p0.x + t*(p1.x-p0.x) == x
// p0.y + t*(p1.y-p0.y) == 0
// t == -p0.y / (p1.y - p0.y)
// Test whether the lines (0,0) -> (+inf,0) and p0 -> p1 intersect at a positive X-coordinate.
Vector2 d = p1 - p0;
if (d.y != 0.f)
{
float t = -p0.y / d.y;
float x = p0.x + t * d.x;
if (t >= 0.f && t <= 1.f)
{
// Remember how close the point was to the edge, for tracking robustness/goodness of the result.
// If this is very large, then we can conclude that the point was contained or not contained in the face.
faceContainmentDistance = std::min(faceContainmentDistance, std::abs(x));
if (x >= 0.f)
++numIntersections;
}
}
}
}
p0 = p1;
}
// Positive return value: face contains the point. Negative: face did not contain the point.
return (numIntersections % 2 == 1) ? faceContainmentDistance : -faceContainmentDistance;
}
bool Polyhedron::Contains(const LineSegment &lineSegment) const
{
return Contains(lineSegment.A) && Contains(lineSegment.B);
}
bool Polyhedron::Contains(const Triangle &triangle) const
{
return Contains(triangle.V0) && Contains(triangle.V1) && Contains(triangle.V2);
}
bool Polyhedron::Contains(const Polygon &polygon) const
{
for(int i = 0; i < polygon.NumVertices(); ++i)
if (!Contains(polygon.Vertex(i)))
return false;
return true;
}
bool Polyhedron::Contains(const AABB &aabb) const
{
for(int i = 0; i < 8; ++i)
if (!Contains(aabb.CornerPoint(i)))
return false;
return true;
}
bool Polyhedron::Contains(const OBB &obb) const
{
for(int i = 0; i < 8; ++i)
if (!Contains(obb.CornerPoint(i)))
return false;
return true;
}
bool Polyhedron::Contains(const Frustum &frustum) const
{
for(int i = 0; i < 8; ++i)
if (!Contains(frustum.CornerPoint(i)))
return false;
return true;
}
bool Polyhedron::Contains(const Polyhedron &polyhedron) const
{
assert(polyhedron.IsClosed());
for(int i = 0; i < polyhedron.NumVertices(); ++i)
if (!Contains(polyhedron.Vertex(i)))
return false;
return true;
}
bool Polyhedron::IsClosed() const {
}
Plane Polyhedron::FacePlane(int faceIndex) const
{
const Face &face = f[faceIndex];
if (face.v.size() >= 3)
return Plane(v[face.v[0]], v[face.v[1]], v[face.v[2]]);
else if (face.v.size() == 2)
return Plane(Line(v[face.v[0]], v[face.v[1]]), ((Vector3)v[face.v[0]]-(Vector3)v[face.v[1]]).Perpendicular());
else if (face.v.size() == 1)
return Plane(v[face.v[0]], Vector3(0,1,0));
else
return Plane();
}
std::vector<Polygon> Polyhedron::Faces() const
{
std::vector<Polygon> faces;
faces.reserve(NumFaces());
for(int i = 0; i < NumFaces(); ++i)
faces.push_back(FacePolygon(i));
return faces;
}
Vector4 PolyFaceNormal(const Polyhedron &poly, int faceIndex)
{
const Polyhedron::Face &face = poly.f[faceIndex];
if (face.v.size() == 3)
{
Vector4 a = Vector4(poly.v[face.v[0]], 1.f);
Vector4 b = Vector4(poly.v[face.v[1]], 1.f);
Vector4 c = Vector4(poly.v[face.v[2]], 1.f);
Vector4 normal = (b-a).Cross(c-a);
normal.Normalize();
return normal;
// return ((vec)v[face.v[1]]-(vec)v[face.v[0]]).Cross((vec)v[face.v[2]]-(vec)v[face.v[0]]).Normalized();
}
else if (face.v.size() > 3)
{
// Use Newell's method of computing the face normal for best stability.
// See Christer Ericson, Real-Time Collision Detection, pp. 491-495.
Vector4 normal(0, 0, 0, 0);
int v0 = face.v.back();
for(size_t i = 0; i < face.v.size(); ++i)
{
int v1 = face.v[i];
normal.x += (double(poly.v[v0].y) - poly.v[v1].y) * (double(poly.v[v0].z) + poly.v[v1].z); // Project on yz
normal.y += (double(poly.v[v0].z) - poly.v[v1].z) * (double(poly.v[v0].x) + poly.v[v1].x); // Project on xz
normal.z += (double(poly.v[v0].x) - poly.v[v1].x) * (double(poly.v[v0].y) + poly.v[v1].y); // Project on xy
v0 = v1;
}
normal.Normalize();
return normal;
#if 0
cv bestNormal;
cs bestLen = -FLOAT_INF;
cv a = poly.v[face.v[face.v.size()-2]];
cv b = poly.v[face.v.back()];
for(size_t i = 0; i < face.v.size()-2; ++i)
{
cv c = poly.v[face.v[i]];
cv normal = (c-b).Cross(a-b);
float len = normal.Normalize();
if (len > bestLen)
{
bestLen = len;
bestNormal = normal;
}
a = b;
b = c;
}
assert(bestLen != -FLOAT_INF);
return DIR_VEC((float)bestNormal.x, (float)bestNormal.y, (float)bestNormal.z);
#endif
#if 0
// Find the longest edge.
cs bestLenSq = -FLOAT_INF;
cv bestEdge;
int v0 = face.v.back();
int bestV0 = 0;
int bestV1 = 0;
for(size_t i = 0; i < face.v.size(); ++i)
{
int v1 = face.v[i];
cv edge = cv(poly.v[v1]) - cv(poly.v[v0]);
cs lenSq = edge.Normalize();
if (lenSq > bestLenSq)
{
bestLenSq = lenSq;
bestEdge = edge;
bestV0 = v0;
bestV1 = v1;
}
v0 = v1;
}
cv bestNormal;
cs bestLen = -FLOAT_INF;
for(size_t i = 0; i < face.v.size(); ++i)
{
if (face.v[i] == bestV0 || face.v[i] == bestV1)
continue;
cv edge = cv(poly.v[i]) - cv(poly.v[bestV0]);
edge.Normalize();
cv normal = bestEdge.Cross(edge);
cs len = normal.Normalize();
if (len > bestLen)
{
bestLen = len;
bestNormal = normal;
}
}
assert(bestLen != -FLOAT_INF);
return DIR_VEC((float)bestNormal.x, (float)bestNormal.y, (float)bestNormal.z);
#endif
}
else if (face.v.size() == 2)
return Vector4(Vector3(((Vector3)poly.v[face.v[1]]-(Vector3)poly.v[face.v[0]]).Cross(((Vector3)poly.v[face.v[0]]-(Vector3)poly.v[face.v[1]]).Perpendicular()-poly.v[face.v[0]]).TryNormalize()));
else if (face.v.size() == 1)
return Vector4(0, 1, 0, 0);
else
return Vector4::NaN;
}
Vector3 Polyhedron::FaceNormal(int faceIndex) const
{
Vector4 normal = PolyFaceNormal(*this, faceIndex);
return Vector3((float)normal.x, (float)normal.y, (float)normal.z);
}
bool Polyhedron::IsConvex() const
{
// This function is O(n^2).
/** @todo Real-Time Collision Detection, p. 64:
A faster O(n) approach is to compute for each face F of P the centroid C of F,
and for all neighboring faces G of F test if C lies behind the supporting plane of
G. If some C fails to lie behind the supporting plane of one or more neighboring
faces, P is concave, and is otherwise assumed convex. However, note that just as the
corresponding polygonal convexity test may fail for a pentagram this test may fail for,
for example, a pentagram extruded out of its plane and capped at the ends. */
float farthestD = -INFINITY;
int numPointsOutside = 0;
for(size_t i = 0; i < f.size(); ++i)
{
if (f[i].v.empty())
continue;
Vector3 pointOnFace = v[f[i].v[0]];
Vector3 faceNormal = FaceNormal((int)i);
for(size_t j = 0; j < v.size(); ++j)
{
float d = faceNormal.Dot(Vector3(v[j]) - pointOnFace);
if (d > 1e-2f)
{
if (d > farthestD)
farthestD = d;
++numPointsOutside;
// LOGW("Distance of vertex %s/%d from face %s/%d: %f",
// Vertex(j).ToString().c_str(), (int)j, FacePlane(i).ToString().c_str(), (int)i, d);
// return false;
}
}
}
if (numPointsOutside > 0)
{
printf("%d point-planes are outside the face planes. Farthest is at distance %f!", numPointsOutside, farthestD);
return false;
}
return true;
}
bool Polyhedron::ContainsConvex(const Vector3 &point, float epsilon) const
{
assert(IsConvex());
for(int i = 0; i < NumFaces(); ++i)
if (FacePlane(i).SignedDistance(point) > epsilon)
return false;
return true;
}
bool Polyhedron::ContainsConvex(const LineSegment &lineSegment) const {
return ContainsConvex(lineSegment.A) && ContainsConvex(lineSegment.B);
}
bool Polyhedron::ContainsConvex(const Triangle &triangle) const
{
return ContainsConvex(triangle.V0) && ContainsConvex(triangle.V1) && ContainsConvex(triangle.V2);
}
bool Polyhedron::FaceContains(int faceIndex, const Vector3 &worldSpacePoint, float polygonThickness) const
{
float faceContainmentDistance = FaceContainmentDistance2D(faceIndex, worldSpacePoint, polygonThickness);
return faceContainmentDistance >= 0.f;
}
bool Polyhedron::Intersects(const LineSegment &lineSegment) const
{
if (Contains(lineSegment))
return true;
for(int i = 0; i < NumFaces(); ++i)
{
float t;
Plane plane = FacePlane(i);
bool intersects = Plane::IntersectLinePlane(plane.Normal, plane.distance, lineSegment.A, lineSegment.B - lineSegment.A, t);
if (intersects && t >= 0.f && t <= 1.f)
if (FaceContains(i, lineSegment.GetPoint(t)))
return true;
}
return false;
}
bool Polyhedron::Intersects(const Line &line) const
{
for(int i = 0; i < NumFaces(); ++i)
if (FacePolygon(i).Intersects(line))
return true;
return false;
}
bool Polyhedron::Intersects(const Ray &ray) const
{
for(int i = 0; i < NumFaces(); ++i)
if (FacePolygon(i).Intersects(ray))
return true;
return false;
}
bool Polyhedron::Intersects(const Plane &plane) const
{
return plane.Intersects(*this);
}
Vector3 Polyhedron::ApproximateConvexCentroid() const
{
// Since this shape is convex, the averaged position of all vertices is inside this polyhedron.
Vector3 arbitraryCenterVertex = Vector3::Zero;
for(int i = 0; i < NumVertices(); ++i)
arbitraryCenterVertex += Vertex(i);
return arbitraryCenterVertex / (float)NumVertices();
}
/** The algorithm for Polyhedron-Polyhedron intersection is from Christer Ericson's Real-Time Collision Detection, p. 384.
As noted by the author, the algorithm is very naive (and here unoptimized), and better methods exist. [groupSyntax] */
bool Polyhedron::Intersects(const Polyhedron &polyhedron) const
{
Vector3 c = this->ApproximateConvexCentroid();
if (polyhedron.Contains(c) && this->Contains(c))
return true;
c = polyhedron.ApproximateConvexCentroid();
if (polyhedron.Contains(c) && this->Contains(c))
return true;
// This test assumes that both this and the other polyhedron are closed.
// This means that for each edge running through vertices i and j, there's a face
// that contains the line segment (i,j) and another neighboring face that contains
// the line segment (j,i). These represent the same line segment (but in opposite direction)
// so we only have to test one of them for intersection. Take i < j as the canonical choice
// and skip the other winding order.
// Test for each edge of this polyhedron whether the other polyhedron intersects it.
for(size_t i = 0; i < f.size(); ++i)
{
assert(!f[i].v.empty()); // Cannot have degenerate faces here, and for performance reasons, don't start checking for this condition in release mode!
int v0 = f[i].v.back();
Vector3 l0 = v[v0];
for(size_t j = 0; j < f[i].v.size(); ++j)
{
int v1 = f[i].v[j];
Vector3 l1 = v[v1];
if (v0 < v1 && polyhedron.Intersects(LineSegment(l0, l1))) // If v0 < v1, then this line segment is the canonical one.
return true;
l0 = l1;
v0 = v1;
}
}
// Test for each edge of the other polyhedron whether this polyhedron intersects it.
for(size_t i = 0; i < polyhedron.f.size(); ++i)
{
assert(!polyhedron.f[i].v.empty()); // Cannot have degenerate faces here, and for performance reasons, don't start checking for this condition in release mode!
int v0 = polyhedron.f[i].v.back();
Vector3 l0 = polyhedron.v[v0];
for(size_t j = 0; j < polyhedron.f[i].v.size(); ++j)
{
int v1 = polyhedron.f[i].v[j];
Vector3 l1 = polyhedron.v[v1];
if (v0 < v1 && Intersects(LineSegment(l0, l1))) // If v0 < v1, then this line segment is the canonical one.
return true;
l0 = l1;
v0 = v1;
}
}
return false;
}
bool Polyhedron::Intersects(const Capsule &capsule) const {
Vector3 pt, ptOnLineSegment;
pt = ClosestPoint(capsule.l, &ptOnLineSegment);
return pt.DistanceSq(ptOnLineSegment) <= capsule.r * capsule.r;
}
Vector3 Polyhedron::ClosestPoint(const LineSegment& lineSegment, Vector3 *lineSegmentPt) const {
if (Contains(lineSegment.A))
{
if (lineSegmentPt)
*lineSegmentPt = lineSegment.A;
return lineSegment.A;
}
if (Contains(lineSegment.B))
{
if (lineSegmentPt)
*lineSegmentPt = lineSegment.B;
return lineSegment.B;
}
Vector3 closestPt = Vector3::NaN;
float closestDistance = FLT_MAX;
Vector3 closestLineSegmentPt = Vector3::NaN;
for(int i = 0; i < NumFaces(); ++i)
{
Vector3 lineSegPt;
Vector3 pt = FacePolygon(i).ClosestPoint(lineSegment, &lineSegPt);
float d = pt.DistanceSq(lineSegPt);
if (d < closestDistance)
{
closestDistance = d;
closestPt = pt;
closestLineSegmentPt = lineSegPt;
}
}
if (lineSegmentPt)
*lineSegmentPt = closestLineSegmentPt;
return closestPt;
}
}

View File

@@ -0,0 +1,6 @@
#include <J3ML/Geometry/QuadTree.h>
namespace Geometry
{
}

207
src/J3ML/Geometry/Ray.cpp Normal file
View File

@@ -0,0 +1,207 @@
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
void Ray::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
outMin = outMax = Vector3::Dot(direction, Origin);
float d = Vector3::Dot(direction, Direction);
// Most of the time, the projection interval will be a half-infinite range, extending to either -inf or +inf.
if (d > 1e-4f)
outMax = INFINITY;
else if (d < -1e4f)
outMin = -INFINITY;
}
RaycastResult Ray::Cast(const Sphere &target, float maxDistance)
{
Vector3 p0 = this->Origin;
Vector3 d = this->Direction.Normalize();
Vector3 c = target.Position;
float r = target.Radius;
Vector3 e = c - p0;
// Using Length here would cause floating point error to creep in
float Esq = Vector3::LengthSquared(e);
float a = Vector3::Dot(e, d);
float b = std::sqrt(Esq - (a*a));
float f = std::sqrt((r*r) - (b*b));
float t = 0;
// No collision
if (r * r - Esq + a * a < 0.f)
{
t = -1;
} else if ( Esq < r*r) {
t = a + f;
} else
{
t = a - f;
}
// TODO: Verify this
Vector3 intersection = p0.Project(d*t);
Vector3 intersection_from_sphere_origin = (intersection - target.Position);
Vector3 normal = -intersection_from_sphere_origin.Normalize();
return RaycastResult{
intersection,
normal,
true,
(Shape *) &target
};
}
RaycastResult Ray::Cast(const AABB &target, float maxDistance) {
float t1 = (target.minPoint.x - Origin.x) / Direction.x;
float t2 = (target.maxPoint.x - Origin.x) / Direction.x;
float t3 = (target.minPoint.y - Origin.y) / Direction.y;
float t4 = (target.maxPoint.y - Origin.y) / Direction.y;
float t5 = (target.minPoint.z - Origin.z) / Direction.z;
float t6 = (target.maxPoint.z - Origin.z) / Direction.z;
float tmin = std::max( std::max( std::min(t1, t2), std::min(t3, t4)), std::min(t5, t6));
float tmax = std::min( std::min( std::max(t1, t2), std::max(t3, t4)), std::max(t5, t6));
// if tmax < 0, ray is intersecting aabb, but whole aabb is behind us.
if (tmax < 0)
return RaycastResult::NoHit();
// if tmin > tmax, ray doesn't intersect AABB
if (tmin > tmax)
return RaycastResult::NoHit();
float t = 0.f;
if (tmin < 0.f)
t = tmax;
t = tmin;
Vector3 p0 = this->Origin;
Vector3 d = this->Direction.Normalize();
// TODO: Verify this
Vector3 intersection = p0.Project(d*t);
// WTF: This algorithm is only valid for spheres!!!
// TODO: Calculate surfacenormal against rectangle
Vector3 intersection_from_sphere_origin = (intersection - target.Centroid());
Vector3 normal = -intersection_from_sphere_origin.Normalize();
return RaycastResult
{
intersection,
normal,
true,
(Shape*)&target
};
}
RaycastResult Ray::Cast(const Plane &target, float maxDistance) {
float nd = Vector3::Dot(Direction, target.Normal);
float pn = Vector3::Dot(Origin, target.Normal);
if (nd >= 0.f)
return RaycastResult::NoHit();
float t = (target.distance - pn) / nd;
Vector3 d = this->Direction.Normalize();
// TODO: verify this
Vector3 intersection = this->Origin.Project(d*t);
// TODO: flip the axis based on direction of incoming ray?
// Take dot product
Vector3 normal = target.Normal;
if (t >= 0.f)
return RaycastResult
{
intersection,
normal,
true,
(Shape*) &target
};
return RaycastResult::NoHit();
}
Vector3 Ray::ClosestPoint(const Vector3 &targetPoint, float &d) const
{
d = std::max(0.f, Vector3::Dot(targetPoint - Origin, Direction));
return GetPoint(d);
}
Vector3 Ray::ClosestPoint(const LineSegment &other, float &d, float &d2) const {
Line::ClosestPointLineLine(Origin, Direction, other.A, other.B - other.A, d, d2);
if (d < 0.f)
{
d = 0.f;
if (d2 >= 0.f && d2 <= 1.f)
{
other.ClosestPoint(Origin, d2);
return Origin;
}
Vector3 p;
float t2;
if (d2 < 0.f)
{
p = other.A;
t2 = 0.f;
}
else // u2 > 1.f
{
p = other.B;
t2 = 1.f;
}
Vector3 closestPoint = ClosestPoint(p, d);
Vector3 closestPoint2 = other.ClosestPoint(Origin, d2);
if (closestPoint.DistanceSquared(p) <= closestPoint2.DistanceSquared(Origin))
{
d2 = t2;
return closestPoint;
}
else
{
d = 0.f;
return Origin;
}
}
else if (d2 < 0.f)
{
d2 = 0.f;
return ClosestPoint(other.A, d);
}
else if (d2 > 1.f)
{
d2 = 1.f;
return ClosestPoint(other.B, d);
}
else
return GetPoint(d);
}
Ray::Ray(const Vector3 &pos, const Vector3 &dir) {
Origin = pos;
Direction = dir;
}
Vector3 Ray::GetPoint(float distance) const {
assert(Direction.IsNormalized());
return Origin + distance * Direction;
}
}

View File

@@ -0,0 +1,28 @@
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
bool Sphere::Contains(const LineSegment &lineseg) const {
}
void Sphere::ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const
{
float d = Vector3::Dot(direction, Position);
outMin = d - Radius;
outMax = d + Radius;
}
Vector3 Sphere::ExtremePoint(const Vector3 &direction) const {
float len = direction.Length();
assert(len > 0.f);
return Position + direction * (Radius / len);
}
Vector3 Sphere::ExtremePoint(const Vector3 &direction, float &projectionDistance) const {
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
}

View File

@@ -0,0 +1,414 @@
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Line.h>
#include <J3ML/Geometry/Capsule.h>
namespace J3ML::Geometry
{
LineSegment Triangle::Edge(int i) const
{
assert(0 <= i);
assert(i <= 2);
if (i == 0)
return LineSegment(V0, V1);
else if (i == 1)
return LineSegment(V1, V2);
else if (i == 2)
return LineSegment(V2, V0);
else
return LineSegment(Vector3::NaN, Vector3::NaN);
}
Vector3 Triangle::Vertex(int i) const
{
assert(0 <= i);
assert(i <= 2);
if (i == 0)
return V0;
else if (i == 1)
return V1;
else if (i == 2)
return V2;
else
return Vector3::NaN;
}
Plane Triangle::PlaneCCW() const
{
return Plane(V0, V1, V2);
}
Plane Triangle::PlaneCW() const
{
return Plane(V0, V1, V2);
}
void Triangle::ProjectToAxis(const Vector3 &axis, float &dMin, float &dMax) const
{
dMin = dMax = Vector3::Dot(axis, V0);
float t = Vector3::Dot(axis, V1);
dMin = std::min(t, dMin);
dMax = std::max(t, dMax);
t = Vector3::Dot(axis, V2);
dMin = std::min(t, dMin);
dMax = std::max(t, dMax);
}
AABB Triangle::BoundingAABB() const {
AABB aabb;
aabb.minPoint = Vector3::Min(V0, V1, V2);
aabb.maxPoint = Vector3::Max(V0, V1, V2);
return aabb;
}
bool Triangle::Intersects(const AABB &aabb) const {
return aabb.Intersects(*this);
}
/** Calculates the intersection between a line and a triangle. The facing is not accounted for, so
rays are reported to intersect triangles that are both front and backfacing.
According to "T. M&ouml;ller, B. Trumbore. Fast, Minimum Storage Ray/Triangle Intersection. 2005."
http://jgt.akpeters.com/papers/MollerTrumbore97/
@param linePos The starting point of the line.
@param lineDir The direction vector of the line. This does not need to be normalized.
@param v0 Vertex 0 of the triangle.
@param v1 Vertex 1 of the triangle.
@param v2 Vertex 2 of the triangle.
@param u [out] The barycentric u coordinate is returned here if an intersection occurred.
@param v [out] The barycentric v coordinate is returned here if an intersection occurred.
@return The distance along the ray to the point of intersection, or +inf if no intersection occurred.
If no intersection, then u and v and t will contain undefined values. If lineDir was not normalized, then to get the
real world-space distance, one must scale the returned value with lineDir.Length(). If the returned value is negative,
then the intersection occurs 'behind' the line starting position, with respect to the direction vector lineDir. */
float Triangle::IntersectLineTri(const Vector3 &linePos, const Vector3 &lineDir,
const Vector3 &v0, const Vector3 &v1, const Vector3 &v2,
float &u, float &v)
{
const float epsilon = 1e-4f;
// Edge vectors
Vector3 vE1 = v1 - v0;
Vector3 vE2 = v2 - v0;
// begin calculating determinant - also used to calculate U parameter
Vector3 vP = lineDir.Cross(vE2);
// If det < 0, intersecting backfacing tri, > 0, intersecting frontfacing tri, 0, parallel to plane.
const float det = vE1.Dot(vP);
// If determinant is near zero, ray lies in plane of triangle.
if (std::abs(det) <= epsilon)
return INFINITY;
const float recipDet = 1.f / det;
// Calculate distance from v0 to ray origin
Vector3 vT = linePos - v0;
// Output barycentric u
u = vT.Dot(vP) * recipDet;
if (u < -epsilon || u > 1.f + epsilon)
return INFINITY; // Barycentric U is outside the triangle - early out.
// Prepare to test V parameter
Vector3 vQ = vT.Cross(vE1);
// Output barycentric v
v = lineDir.Dot(vQ) * recipDet;
if (v < -epsilon || u + v > 1.f + epsilon) // Barycentric V or the combination of U and V are outside the triangle - no intersection.
return INFINITY;
// Barycentric u and v are in limits, the ray intersects the triangle.
// Output signed distance from ray to triangle.
return vE2.Dot(vQ) * recipDet;
// return (det < 0.f) ? IntersectBackface : IntersectFrontface;
}
Vector3 Triangle::ClosestPointToTriangleEdge(const Line &other, float *outU, float *outV, float *outD) const
{
///@todo Optimize!
// The line is parallel to the triangle.
float unused1, unused2, unused3;
float d1, d2, d3;
Vector3 pt1 = Edge(0).ClosestPoint(other, unused1, d1);
Vector3 pt2 = Edge(1).ClosestPoint(other, unused2, d2);
Vector3 pt3 = Edge(2).ClosestPoint(other, unused3, d3);
float dist1 = pt1.DistanceSq(other.GetPoint(d1));
float dist2 = pt2.DistanceSq(other.GetPoint(d2));
float dist3 = pt3.DistanceSq(other.GetPoint(d3));
if (dist1 <= dist2 && dist1 <= dist3)
{
if (outU) *outU = BarycentricUV(pt1).x;
if (outV) *outV = BarycentricUV(pt1).y;
if (outD) *outD = d1;
return pt1;
}
else if (dist2 <= dist3)
{
if (outU) *outU = BarycentricUV(pt2).x;
if (outV) *outV = BarycentricUV(pt2).y;
if (outD) *outD = d2;
return pt2;
}
else
{
if (outU) *outU = BarycentricUV(pt3).x;
if (outV) *outV = BarycentricUV(pt3).y;
if (outD) *outD = d3;
return pt3;
}
}
Vector3 Triangle::ClosestPointToTriangleEdge(const LineSegment &lineSegment, float *outU, float *outV, float *outD) const
{
///@todo Optimize!
// The line is parallel to the triangle.
float unused1, unused2, unused3;
float d1, d2, d3;
Vector3 pt1 = Edge(0).ClosestPoint(lineSegment, unused1, d1);
Vector3 pt2 = Edge(1).ClosestPoint(lineSegment, unused2, d2);
Vector3 pt3 = Edge(2).ClosestPoint(lineSegment, unused3, d3);
float dist1 = pt1.DistanceSq(lineSegment.GetPoint(d1));
float dist2 = pt2.DistanceSq(lineSegment.GetPoint(d2));
float dist3 = pt3.DistanceSq(lineSegment.GetPoint(d3));
if (dist1 <= dist2 && dist1 <= dist3)
{
if (outU) *outU = BarycentricUV(pt1).x;
if (outV) *outV = BarycentricUV(pt1).y;
if (outD) *outD = d1;
return pt1;
}
else if (dist2 <= dist3)
{
if (outU) *outU = BarycentricUV(pt2).x;
if (outV) *outV = BarycentricUV(pt2).y;
if (outD) *outD = d2;
return pt2;
}
else
{
if (outU) *outU = BarycentricUV(pt3).x;
if (outV) *outV = BarycentricUV(pt3).y;
if (outD) *outD = d3;
return pt3;
}
}
Vector3 Triangle::ClosestPoint(const Vector3 &p) const
{
/** The code for Triangle-float3 test is from Christer Ericson's Real-Time Collision Detection, pp. 141-142. */
// Check if P is in vertex region outside A.
Vector3 ab = V1 - V0;
Vector3 ac = V2 - V0;
Vector3 ap = p - V0;
float d1 = Vector3::Dot(ab, ap);
float d2 = Vector3::Dot(ac, ap);
if (d1 <= 0.f && d2 <= 0.f)
return V0; // Barycentric coordinates are (1,0,0).
// Check if P is in vertex region outside B.
Vector3 bp = p - V1;
float d3 = Vector3::Dot(ab, bp);
float d4 = Vector3::Dot(ac, bp);
if (d3 >= 0.f && d4 <= d3)
return V1; // Barycentric coordinates are (0,1,0).
// Check if P is in edge region of AB, and if so, return the projection of P onto AB.
float vc = d1*d4 - d3*d2;
if (vc <= 0.f && d1 >= 0.f && d3 <= 0.f)
{
float v = d1 / (d1 - d3);
return V0 + v * ab; // The barycentric coordinates are (1-v, v, 0).
}
// Check if P is in vertex region outside C.
Vector3 cp = p - V2;
float d5 = Vector3::Dot(ab, cp);
float d6 = Vector3::Dot(ac, cp);
if (d6 >= 0.f && d5 <= d6)
return V2; // The barycentric coordinates are (0,0,1).
// Check if P is in edge region of AC, and if so, return the projection of P onto AC.
float vb = d5*d2 - d1*d6;
if (vb <= 0.f && d2 >= 0.f && d6 <= 0.f)
{
float w = d2 / (d2 - d6);
return V0 + w * ac; // The barycentric coordinates are (1-w, 0, w).
}
// Check if P is in edge region of BC, and if so, return the projection of P onto BC.
float va = d3*d6 - d5*d4;
if (va <= 0.f && d4 - d3 >= 0.f && d5 - d6 >= 0.f)
{
float w = (d4 - d3) / (d4 - d3 + d5 - d6);
return V1 + w * (V2 - V0); // The barycentric coordinates are (0, 1-w, w).
}
// P must be inside the face region. Compute the closest point through its barycentric coordinates (u,v,w).
float denom = 1.f / (va + vb + vc);
float v = vb * denom;
float w = vc * denom;
return V0 + ab * v + ac * w;
}
Vector3 Triangle::ClosestPoint(const LineSegment& lineSegment, Vector3 *otherPt) const
{
///\todo Optimize.
float u, v;
float t = IntersectLineTri(lineSegment.A, lineSegment.B - lineSegment.A, V0, V1, V2, u, v);
bool intersects = (t >= 0.0f && t <= 1.0f);
if (intersects)
{
// assume3(lineSegment.GetPoint(t).Equals(this->Point(u, v)), lineSegment.GetPoint(t).SerializeToCodeString(), this->Point(u, v).SerializeToCodeString(), lineSegment.GetPoint(t).Distance(this->Point(u, v)));
if (otherPt)
*otherPt = lineSegment.GetPoint(t);
return this->Point(u, v);
}
float u1,v1,d1;
Vector3 pt1 = ClosestPointToTriangleEdge(lineSegment, &u1, &v1, &d1);
Vector3 pt2 = ClosestPoint(lineSegment.A);
Vector3 pt3 = ClosestPoint(lineSegment.B);
float D1 = pt1.DistanceSq(lineSegment.GetPoint(d1));
float D2 = pt2.DistanceSq(lineSegment.A);
float D3 = pt3.DistanceSq(lineSegment.B);
if (D1 <= D2 && D1 <= D3)
{
if (otherPt)
*otherPt = lineSegment.GetPoint(d1);
return pt1;
}
else if (D2 <= D3)
{
if (otherPt)
*otherPt = lineSegment.A;
return pt2;
}
else
{
if (otherPt)
*otherPt = lineSegment.B;
return pt3;
}
}
/// Implementation from Christer Ericson's Real-Time Collision Detection, pp. 51-52.
inline float TriArea2D(float x1, float y1, float x2, float y2, float x3, float y3)
{
return (x1-x2)*(y2-y3) - (x2-x3)*(y1-y2);
}
Vector3 Triangle::BarycentricUVW(const Vector3 &point) const {
// Implementation from Christer Ericson's Real-Time Collision Detection, pp. 51-52.
// Unnormalized triangle normal.
Vector3 m = Vector3::Cross(V1-V0, V2-V1);
// Nominators and one-over-denominator for u and v ratios.
float nu, nv, ood;
// Absolute components for determining projection plane.
float x = std::abs(m.x);
float y = std::abs(m.y);
float z = std::abs(m.z);
if (x >= y && x >= z)
{
// Project to the yz plane.
nu = TriArea2D(point.y, point.z, V1.y, V1.z, V2.y, V2.z); // Area of PBC in yz-plane.
nv = TriArea2D(point.y, point.z, V2.y, V2.z, V0.y, V0.z); // Area OF PCA in yz-plane.
ood = 1.f / m.x; // 1 / (2*area of ABC in yz plane)
}
else if (y >= z) // Note: The book has a redundant 'if (y >= x)' comparison
{
// y is largest, project to the xz-plane.
nu = TriArea2D(point.x, point.z, V1.x, V1.z, V2.x, V2.z);
nv = TriArea2D(point.x, point.z, V2.x, V2.z, V0.x, V0.z);
ood = 1.f / -m.y;
}
else // z is largest, project to the xy-plane.
{
nu = TriArea2D(point.x, point.y, V1.x, V1.y, V2.x, V2.y);
nv = TriArea2D(point.x, point.y, V2.x, V2.y, V0.x, V0.y);
ood = 1.f / m.z;
}
float u = nu * ood;
float v = nv * ood;
float w = 1.f - u - v;
return Vector3(u,v,w);
}
bool Triangle::Intersects(const Capsule &capsule) const {
return capsule.Intersects(*this);
}
Vector3 Triangle::ExtremePoint(const Vector3 &direction) const {
Vector3 mostExtreme = Vector3::NaN;
float mostExtremeDist = -FLT_MAX;
for(int i = 0; i < 3; ++i)
{
Vector3 pt = Vertex(i);
float d = Vector3::Dot(direction, pt);
if (d > mostExtremeDist)
{
mostExtremeDist = d;
mostExtreme = pt;
}
}
return mostExtreme;
}
Vector3 Triangle::ExtremePoint(const Vector3 &direction, float &projectionDistance) const {
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
float Triangle::DistanceSq(const Vector3 &point) const {
return ClosestPoint(point).DistanceSq(point);
}
Vector2 Triangle::BarycentricUV(const Vector3 &point) const {
Vector3 uvw = BarycentricUVW(point);
return Vector2{uvw.y, uvw.z};
}
Vector3 Triangle::Point(const Vector2 &uv) const {
return Point(uv.x, uv.y);
}
Vector3 Triangle::Point(float u, float v) const {
// In case the triangle is far away from the origin but is small in size, the elements of 'a' will have large magnitudes,
// and the elements of (b-a) and (c-a) will be much smaller quantities. Therefore be extra careful with the
// parentheses and first sum the small floats together before adding it to the large one.
return V0 + ((V1-V0) * u + (V2-V0) * v);
}
Vector3 Triangle::Point(const Vector3 &uvw) const {
return Point(uvw.x, uvw.y, uvw.z);
}
Vector3 Triangle::Point(float u, float v, float w) const {
return u * V0 + v * V1 + w * V2;
}
bool Triangle::Contains(const Vector3 &point, float triangleThicknessSq) const {
Vector3 normal = (V1-V0).Cross(V2-V0);
float lenSq = normal.LengthSquared();
float d = normal.Dot(V1 - point);
if (d*d > triangleThicknessSq * lenSq)
return false; ///@todo The plane-point distance test is omitted in Real-Time Collision Detection. p. 25. A bug in the book?
Vector3 br = BarycentricUVW(point);
return br.x >= -1e-3f && br.y >= -1e-3f && br.z >= -1e-3f; // Allow for a small epsilon to properly account for points very near the edges of the triangle.
}
}

View File

@@ -0,0 +1 @@
#include <J3ML/Geometry/TriangleMesh.h>

52
src/J3ML/J3ML.cpp Normal file
View File

@@ -0,0 +1,52 @@
#include <J3ML/J3ML.h>
namespace J3ML
{
Math::Rotation Math::operator ""_degrees(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_deg(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_radians(long double rads) { return {(float)rads}; }
Math::Rotation Math::operator ""_rad(long double rads) { return {(float)rads}; }
float Math::FastRSqrt(float x) {
return 1.f / FastSqrt(x);
}
float Math::RSqrt(float x) {
return 1.f / Sqrt(x);
}
float Math::Radians(float degrees) { return degrees * (Pi/180.f); }
float Math::Degrees(float radians) { return radians * (180.f/Pi); }
bool Math::EqualAbs(float a, float b, float epsilon) {
return std::abs(a - b) < epsilon;
}
float Math::RecipFast(float x) {
// TODO: Implement SSE rcp instruction.
return 1.f / x;
}
Math::Rotation::Rotation() : valueInRadians(0) {}
Math::Rotation::Rotation(float value) : valueInRadians(value) {}
Math::Rotation Math::Rotation::operator+(const Math::Rotation &rhs) {
valueInRadians += rhs.valueInRadians;
}
float Math::Interp::SmoothStart(float t) {
assert(t >= 0.f && t <= 1.f);
return t*t;
}
int Math::BitTwiddling::CountBitsSet(u32 value) {
}
}

View File

@@ -0,0 +1,6 @@
#include "J3ML/LinearAlgebra.h"
#include <cassert>
namespace LinearAlgebra {
}

View File

@@ -0,0 +1,17 @@
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
AxisAngle::AxisAngle() : axis(Vector3::Zero) {}
AxisAngle::AxisAngle(const Vector3 &axis, float angle) : axis(axis), angle(angle) {}
Quaternion AxisAngle::ToQuaternion() const {
return {
axis.x * std::sin(angle/2),
axis.y * std::sin(angle/2),
axis.z * std::sin(angle/2),
std::cos(angle/2)
};
}
}

View File

@@ -0,0 +1 @@
#include <J3ML/LinearAlgebra/CoordinateFrame.h>

View File

@@ -0,0 +1,51 @@
#include <J3ML/LinearAlgebra/EulerAngle.h>
#include <cmath>
#include <algorithm>
namespace J3ML::LinearAlgebra {
EulerAngle::EulerAngle(float pitch, float yaw, float roll): pitch(pitch), yaw(yaw), roll(roll)
{}
float EulerAngle::GetPitch(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
float EulerAngle::GetYaw(float yaw_limit) const
{ return std::clamp(std::remainderf(yaw, 360.f), -yaw_limit, yaw_limit); }
float EulerAngle::GetRoll(float pitch_limit) const
{ return std::clamp( std::remainderf(pitch,360.f), -pitch_limit, pitch_limit); }
bool EulerAngle::operator==(const EulerAngle& a) const
{
return (pitch == a.pitch) && (yaw == a.yaw) && (roll == a.roll);
}
void EulerAngle::clamp()
{
if (this->pitch > 89.0f)
this->pitch = 89.0f;
if (this->pitch <= -89.0f)
this->pitch = -89.0f;
//TODO: Make this entirely seamless by getting the amount they rotated passed -180 and +180 by.
if (this->yaw <= -180.0f)
this->yaw = 180.0f;
if (this->yaw >= 180.01f)
this->yaw = -179.9f;
if (this->roll >= 360.0f)
this->roll = 0.0;
if (this->roll <= -360.0f)
this->roll = 0.0;
}
EulerAngle EulerAngle::movementAngle() const
{
EulerAngle a;
a.pitch = (cos(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
a.yaw = -sin(Math::Radians(pitch));
a.roll = (sin(Math::Radians(yaw)) * cos(Math::Radians(pitch)));
return a;
}
EulerAngle::EulerAngle() : pitch(0), yaw(0), roll(0) {}
}

View File

@@ -0,0 +1,25 @@
#include <J3ML/LinearAlgebra/Matrix2x2.h>
namespace J3ML::LinearAlgebra {
Vector2 Matrix2x2::GetRow(int index) const {
float x = this->elems[index][0];
float y = this->elems[index][1];
return {x, y};
}
Vector2 Matrix2x2::GetColumn(int index) const {
float x = this->elems[0][index];
float y = this->elems[1][index];
return {x, y};
}
float Matrix2x2::At(int x, int y) const {
return this->elems[x][y];
}
float &Matrix2x2::At(int x, int y) {
return this->elems[x][y];
}
}

View File

@@ -0,0 +1,460 @@
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <cmath>
namespace J3ML::LinearAlgebra {
const Matrix3x3 Matrix3x3::Zero = Matrix3x3(0, 0, 0, 0, 0, 0, 0, 0, 0);
const Matrix3x3 Matrix3x3::Identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1);
const Matrix3x3 Matrix3x3::NaN = Matrix3x3(NAN);
Matrix3x3::Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21,
float m22) {
this->elems[0][0] = m00;
this->elems[0][1] = m01;
this->elems[0][2] = m02;
this->elems[1][0] = m10;
this->elems[1][1] = m11;
this->elems[1][2] = m12;
this->elems[2][0] = m20;
this->elems[2][1] = m21;
this->elems[2][2] = m22;
}
Vector3 Matrix3x3::GetRow(int index) const {
float x = this->elems[index][0];
float y = this->elems[index][1];
float z = this->elems[index][2];
return {x, y, z};
}
Vector3 Matrix3x3::GetColumn(int index) const {
float x = this->elems[0][index];
float y = this->elems[1][index];
float z = this->elems[2][index];
return {x, y, z};
}
float Matrix3x3::At(int x, int y) const {
return this->elems[x][y];
}
void Matrix3x3::SetAt(int x, int y, float value)
{
this->elems[x][y] = value;
}
Vector3 Matrix3x3::operator*(const Vector3 &rhs) const {
return {
At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z
};
}
Matrix3x3 Matrix3x3::operator*(const Matrix3x3 &rhs) const {
//Matrix3x3 r;
auto m00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0);
auto m01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1);
auto m02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2);
auto m10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0);
auto m11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1);
auto m12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2);
auto m20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0);
auto m21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1);
auto m22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2);
return Matrix3x3({m00, m01, m02}, {m10, m11, m12}, {m20, m21, m22});
}
Matrix3x3::Matrix3x3(float val) {
this->elems[0][0] = val;
this->elems[0][1] = val;
this->elems[0][2] = val;
this->elems[1][0] = val;
this->elems[1][1] = val;
this->elems[1][2] = val;
this->elems[2][0] = val;
this->elems[2][1] = val;
this->elems[2][2] = val;
}
Matrix3x3::Matrix3x3(const Vector3 &r1, const Vector3 &r2, const Vector3 &r3) {
this->elems[0][0] = r1.x;
this->elems[0][1] = r1.y;
this->elems[0][2] = r1.z;
this->elems[1][0] = r2.x;
this->elems[1][1] = r2.y;
this->elems[1][2] = r2.z;
this->elems[2][0] = r3.x;
this->elems[2][1] = r3.y;
this->elems[2][2] = r3.z;
}
Matrix3x3::Matrix3x3(const Quaternion &orientation) {
}
float Matrix3x3::Determinant() const {
const float a = elems[0][0];
const float b = elems[0][1];
const float c = elems[0][2];
const float d = elems[1][0];
const float e = elems[1][1];
const float f = elems[1][2];
const float g = elems[2][0];
const float h = elems[2][1];
const float i = elems[2][2];
// Aight, what the fuck?
return a*(e*i - f*h) + b*(f*g - d*i) + c*(d*h - e*g);
}
Matrix3x3 Matrix3x3::Inverse() const {
// Compute the inverse directly using Cramer's rule
// Warning: This method is numerically very unstable!
float d = Determinant();
d = 1.f / d;
Matrix3x3 i = {
d * (At(1, 1) * At(2, 2) - At(1, 2) * At(2, 1)),
d * (At(0, 2) * At(2, 1) - At(0, 1) * At(2, 2)),
d * (At(0, 1) * At(1, 2) - At(0, 2) * At(1, 1)),
d * (At(1, 2) * At(2, 0) - At(1, 0) * At(2, 2)),
d * (At(0, 0) * At(2, 2) - At(0, 2) * At(2, 0)),
d * (At(0, 2) * At(1, 0) - At(0, 0) * At(1, 2)),
d * (At(1, 0) * At(2, 1) - At(1, 1) * At(2, 0)),
d * (At(2, 0) * At(0, 1) - At(0, 0) * At(2,1)),
d * (At(0,0) * At(1, 1) - At(0, 1) * At(1, 0))
};
return i;
}
Matrix3x3 Matrix3x3::Transpose() const {
auto m00 = this->elems[0][0];
auto m01 = this->elems[0][1];
auto m02 = this->elems[0][2];
auto m10 = this->elems[1][0];
auto m11 = this->elems[1][1];
auto m12 = this->elems[1][2];
auto m20 = this->elems[2][0];
auto m21 = this->elems[2][1];
auto m22 = this->elems[2][2];
// NO: This is correct order for transposition!
return {
m00, m10, m20,
m01, m11, m21,
m02, m12, m22
};
}
Vector2 Matrix3x3::Transform(const Vector2 &rhs) const {
return {
At(0,0) * rhs.x + At(0, 1) * rhs.y,
At(1,0) * rhs.x + At(1, 1) * rhs.y
};
}
Vector3 Matrix3x3::Transform(const Vector3 &rhs) const {
return {
At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z
};
}
Quaternion Matrix3x3::ToQuat() const {
auto m00 = At(0,0);
auto m01 = At(0, 1);
auto m02 = At(0, 2);
auto m10 = At(1,0);
auto m11 = At(1, 1);
auto m12 = At(1, 2);
auto m20 = At(2,0);
auto m21 = At(2, 1);
auto m22 = At(2, 2);
auto w = std::sqrt(1.f + m00 + m11 + m22) / 2.f;
float w4 = (4.f * w);
return {
(m21 - m12) / w4,
(m02 - m20) / w4,
(m10 - m01) / w4,
w
};
}
void Matrix3x3::SetRotatePart(const Vector3 &a, float angle) {
float s = std::sin(angle);
float c = std::cos(angle);
const float c1 = 1.f - c;
elems[0][0] = c+c1*a.x*a.x;
elems[1][0] = c1*a.x*a.y+s*a.z;
elems[2][0] = c1*a.x*a.z-s*a.y;
elems[0][1] = c1*a.x*a.y-s*a.z;
elems[1][1] = c+c1*a.y*a.y;
elems[2][1] = c1*a.y*a.z+s*a.x;
elems[0][2] = c1*a.x*a.z+s*a.y;
elems[1][2] = c1*a.y*a.z-s*a.x;
elems[2][2] = c+c1*a.z*a.z;
}
Matrix3x3 Matrix3x3::RotateAxisAngle(const Vector3 &axis, float angleRadians) {
Matrix3x3 r;
r.SetRotatePart(axis, angleRadians);
return r;
}
void Matrix3x3::SetRow(int i, const Vector3 &vec) {
elems[i][0] = vec.x;
elems[i][1] = vec.y;
elems[i][2] = vec.z;
}
void Matrix3x3::SetColumn(int i, const Vector3& vec)
{
elems[0][i] = vec.x;
elems[1][i] = vec.y;
elems[2][i] = vec.z;
}
Matrix3x3
Matrix3x3::LookAt(const Vector3 &forward, const Vector3 &target, const Vector3 &localUp, const Vector3 &worldUp) {
// User must input proper normalized input direction vectors
// In the local space, the forward and up directions must be perpendicular to be well-formed.
// In the world space, the target direction and world up cannot be degenerate (co-linear)
// Generate the third basis vector in the local space;
Vector3 localRight = localUp.Cross(forward).Normalize();
// A. Now we have an orthonormal linear basis {localRight, localUp, forward} for the object local space.
// Generate the third basis vector for the world space
Vector3 worldRight = worldUp.Cross(target).Normalize();
// Since the input worldUp vector is not necessarily perpendicular to the target direction vector
// We need to compute the real world space up vector that the "head" of the object will point
// towards when the model is looking towards the desired target direction
Vector3 perpWorldUp = target.Cross(worldRight).Normalize();
// B. Now we have an orthonormal linear basis {worldRight, perpWorldUp, targetDirection } for the desired target orientation.
// We want to build a matrix M that performs the following mapping:
// 1. localRight must be mapped to worldRight. (M * localRight = worldRight)
// 2. localUp must be mapped to perpWorldUp. (M * localUp = perpWorldUp)
// 3. localForward must be mapped to targetDirection. (M * localForward = targetDirection)
// i.e. we want to map the basis A to basis B.
// This matrix M exists, and it is an orthonormal rotation matrix with a determinant of +1, because
// the bases A and B are orthonormal with the same handedness.
// Below, use the notation that (a,b,c) is a 3x3 matrix with a as its first column, b second, and c third.
// By algebraic manipulation, we can rewrite conditions 1, 2 and 3 in a matrix form:
// M * (localRight, localUp, localForward) = (worldRight, perpWorldUp, targetDirection)
// or M = (worldRight, perpWorldUp, targetDirection) * (localRight, localUp, localForward)^{-1}.
// or M = m1 * m2, where
// m1 equals (worldRight, perpWorldUp, target):
Matrix3x3 m1(worldRight, perpWorldUp, target);
// and m2 equals (localRight, localUp, localForward)^{-1}:
Matrix3x3 m2;
m2.SetRow(0, localRight);
m2.SetRow(1, localUp);
m2.SetRow(2, forward);
// Above we used the shortcut that for an orthonormal matrix M, M^{-1} = M^T. So set the rows
// and not the columns to directly produce the transpose, i.e. the inverse of (localRight, localUp, localForward).
// Compute final M.
m2 = m1 * m2;
// And fix any numeric stability issues by re-orthonormalizing the result.
m2.Orthonormalize(0, 1, 2);
return m2;
}
Vector3 Matrix3x3::Diagonal() const {
return {elems[0][0],
elems[1][1],
elems[2][2]
};
}
float &Matrix3x3::At(int row, int col) {
return elems[row][col];
}
Vector3 Matrix3x3::WorldZ() const {
return GetColumn(2);
}
Vector3 Matrix3x3::WorldY() const {
return GetColumn(1);
}
Vector3 Matrix3x3::WorldX() const {
return GetColumn(0);
}
Matrix3x3 Matrix3x3::FromRS(const Quaternion &rotate, const Vector3 &scale) {
return Matrix3x3(rotate) * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromRS(const Matrix3x3 &rotate, const Vector3 &scale) {
return rotate * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromQuat(const Quaternion &orientation) {
return Matrix3x3(orientation);
}
Matrix3x3 Matrix3x3::ScaleBy(const Vector3 &rhs) {
return *this * FromScale(rhs);
}
Vector3 Matrix3x3::GetScale() const {
return Vector3(GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length());
}
Vector3 Matrix3x3::operator[](int row) const {
return Vector3{elems[row][0], elems[row][1], elems[row][2]};
}
Matrix3x3 Matrix3x3::FromScale(const Vector3 &scale) {
Matrix3x3 m;
m.At(0,0) = scale.x;
m.At(1,1) = scale.y;
m.At(2,2) = scale.z;
return m;
}
Matrix3x3 Matrix3x3::FromScale(float sx, float sy, float sz) {
Matrix3x3 m;
m.At(0,0) = sx;
m.At(1,1) = sy;
m.At(2,2) = sz;
return m;
}
void Matrix3x3::Orthonormalize(int c0, int c1, int c2) {
Vector3 v0 = GetColumn(c0);
Vector3 v1 = GetColumn(c1);
Vector3 v2 = GetColumn(c2);
Vector3::Orthonormalize(v0, v1, v2);
SetColumn(c0, v0);
SetColumn(c1, v1);
SetColumn(c2, v2);
}
Matrix3x3::Matrix3x3(const float *data) {
assert(data);
At(0, 0) = data[0];
At(0, 1) = data[1];
At(0, 2) = data[2];
At(1, 0) = data[4];
At(1, 1) = data[5];
At(1, 2) = data[6];
At(2, 0) = data[8];
At(2, 1) = data[9];
At(2, 2) = data[10];
}
Vector4 Matrix3x3::Mul(const Vector4 &rhs) const {
return {Mul(rhs.XYZ()), rhs.GetW()};
}
Vector3 Matrix3x3::Mul(const Vector3 &rhs) const {
return *this * rhs;
}
Vector2 Matrix3x3::Mul(const Vector2 &rhs) const {
return *this * rhs;
}
Matrix4x4 Matrix3x3::Mul(const Matrix4x4 &rhs) const {
return *this * rhs;
}
Matrix3x3 Matrix3x3::Mul(const Matrix3x3 &rhs) const {
return *this * rhs;
}
bool Matrix3x3::IsRowOrthogonal(float epsilon) const
{
return GetRow(0).IsPerpendicular(GetRow(1), epsilon)
&& GetRow(0).IsPerpendicular(GetRow(2), epsilon)
&& GetRow(1).IsPerpendicular(GetRow(2), epsilon);
}
bool Matrix3x3::IsColOrthogonal(float epsilon) const
{
return GetColumn(0).IsPerpendicular(GetColumn(1), epsilon)
&& GetColumn(0).IsPerpendicular(GetColumn(2), epsilon)
&& GetColumn(1).IsPerpendicular(GetColumn(2), epsilon);
}
bool Matrix3x3::HasUniformScale(float epsilon) const {
Vector3 scale = ExtractScale();
return Math::EqualAbs(scale.x, scale.y, epsilon) && Math::EqualAbs(scale.x, scale.z, epsilon);
}
Vector3 Matrix3x3::GetRow3(int index) const {
return GetRow(index);
}
Vector3 Matrix3x3::GetColumn3(int index) const {
return GetColumn(index);
}
Matrix4x4 Matrix3x3::operator*(const Matrix4x4 &rhs) const {
auto lhs = *this;
Matrix4x4 r;
r[0][0] = lhs.At(0, 0) * rhs.At(0, 0) + lhs.At(0, 1) * rhs.At(1, 0) + lhs.At(0, 2) * rhs.At(2, 0);
r[0][1] = lhs.At(0, 0) * rhs.At(0, 1) + lhs.At(0, 1) * rhs.At(1, 1) + lhs.At(0, 2) * rhs.At(2, 1);
r[0][2] = lhs.At(0, 0) * rhs.At(0, 2) + lhs.At(0, 1) * rhs.At(1, 2) + lhs.At(0, 2) * rhs.At(2, 2);
r[0][3] = lhs.At(0, 0) * rhs.At(0, 3) + lhs.At(0, 1) * rhs.At(1, 3) + lhs.At(0, 2) * rhs.At(2, 3);
r[1][0] = lhs.At(1, 0) * rhs.At(0, 0) + lhs.At(1, 1) * rhs.At(1, 0) + lhs.At(1, 2) * rhs.At(2, 0);
r[1][1] = lhs.At(1, 0) * rhs.At(0, 1) + lhs.At(1, 1) * rhs.At(1, 1) + lhs.At(1, 2) * rhs.At(2, 1);
r[1][2] = lhs.At(1, 0) * rhs.At(0, 2) + lhs.At(1, 1) * rhs.At(1, 2) + lhs.At(1, 2) * rhs.At(2, 2);
r[1][3] = lhs.At(1, 0) * rhs.At(0, 3) + lhs.At(1, 1) * rhs.At(1, 3) + lhs.At(1, 2) * rhs.At(2, 3);
r[2][0] = lhs.At(2, 0) * rhs.At(0, 0) + lhs.At(2, 1) * rhs.At(1, 0) + lhs.At(2, 2) * rhs.At(2, 0);
r[2][1] = lhs.At(2, 0) * rhs.At(0, 1) + lhs.At(2, 1) * rhs.At(1, 1) + lhs.At(2, 2) * rhs.At(2, 1);
r[2][2] = lhs.At(2, 0) * rhs.At(0, 2) + lhs.At(2, 1) * rhs.At(1, 2) + lhs.At(2, 2) * rhs.At(2, 2);
r[2][3] = lhs.At(2, 0) * rhs.At(0, 3) + lhs.At(2, 1) * rhs.At(1, 3) + lhs.At(2, 2) * rhs.At(2, 3);
r[3][0] = rhs.At(3, 0);
r[3][1] = rhs.At(3, 1);
r[3][2] = rhs.At(3, 2);
r[3][3] = rhs.At(3, 3);
return r;
}
Vector2 Matrix3x3::operator*(const Vector2 &rhs) const {
return Transform(rhs);
}
}

View File

@@ -0,0 +1,709 @@
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
namespace J3ML::LinearAlgebra {
const Matrix4x4 Matrix4x4::Zero = Matrix4x4(0.f);
const Matrix4x4 Matrix4x4::Identity = Matrix4x4({1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1});
const Matrix4x4 Matrix4x4::NaN = Matrix4x4(NAN);
Matrix4x4::Matrix4x4(const Vector4 &r1, const Vector4 &r2, const Vector4 &r3, const Vector4 &r4) {
this->elems[0][0] = r1.x;
this->elems[0][1] = r1.y;
this->elems[0][2] = r1.z;
this->elems[0][3] = r1.w;
this->elems[1][0] = r2.x;
this->elems[1][1] = r2.y;
this->elems[1][2] = r2.z;
this->elems[1][3] = r2.w;
this->elems[2][0] = r3.x;
this->elems[2][1] = r3.y;
this->elems[2][2] = r3.z;
this->elems[2][3] = r3.w;
this->elems[3][0] = r4.x;
this->elems[3][1] = r4.y;
this->elems[3][2] = r4.z;
this->elems[3][3] = r4.w;
}
Matrix4x4::Matrix4x4(float val) {
this->elems[0][0] = val;
this->elems[0][1] = val;
this->elems[0][2] = val;
this->elems[0][3] = val;
this->elems[1][0] = val;
this->elems[1][1] = val;
this->elems[1][2] = val;
this->elems[1][3] = val;
this->elems[2][0] = val;
this->elems[2][1] = val;
this->elems[2][2] = val;
this->elems[2][3] = val;
this->elems[3][0] = val;
this->elems[3][1] = val;
this->elems[3][2] = val;
this->elems[3][3] = val;
}
Matrix4x4::Matrix4x4(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) {
this->elems[0][0] = m00;
this->elems[0][1] = m01;
this->elems[0][2] = m02;
this->elems[0][3] = m03;
this->elems[1][0] = m10;
this->elems[1][1] = m11;
this->elems[1][2] = m12;
this->elems[1][3] = m13;
this->elems[2][0] = m20;
this->elems[2][1] = m21;
this->elems[2][2] = m22;
this->elems[2][3] = m23;
this->elems[3][0] = m30;
this->elems[3][1] = m31;
this->elems[3][2] = m32;
this->elems[3][3] = m33;
}
Matrix4x4::Matrix4x4(const Quaternion &orientation) {
}
void Matrix4x4::SetTranslatePart(float translateX, float translateY, float translateZ) {
elems[0][3] = translateX;
elems[1][3] = translateY;
elems[2][3] = translateZ;
}
void Matrix4x4::SetTranslatePart(const Vector3 &offset) {
elems[0][3] = offset.x;
elems[1][3] = offset.y;
elems[2][3] = offset.z;
}
void Matrix4x4::SetRotatePart(const Quaternion& q)
{
// See e.g. http://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf .
const float x = q.x;
const float y = q.y;
const float z = q.z;
const float w = q.w;
elems[0][0] = 1 - 2*(y*y + z*z); elems[0][1] = 2*(x*y - z*w); elems[0][2] = 2*(x*z + y*w);
elems[1][0] = 2*(x*y + z*w); elems[1][1] = 1 - 2*(x*x + z*z); elems[1][2] = 2*(y*z - x*w);
elems[2][0] = 2*(x*z - y*w); elems[2][1] = 2*(y*z + x*w); elems[2][2] = 1 - 2*(x*x + y*y);
}
void Matrix4x4::Set3x3Part(const Matrix3x3& r)
{
At(0, 0) = r[0][0]; At(0, 1) = r[0][1]; At(0, 2) = r[0][2];
At(1, 0) = r[1][0]; At(1, 1) = r[1][1]; At(1, 2) = r[1][2];
At(2, 0) = r[2][0]; At(2, 1) = r[2][1]; At(2, 2) = r[2][2];
}
void Matrix4x4::SetRow(int row, const Vector3 &rowVector, float m_r3) {
SetRow(row, rowVector.x, rowVector.y, rowVector.z, m_r3);
}
void Matrix4x4::SetRow(int row, const Vector4 &rowVector) {
SetRow(row, rowVector.x, rowVector.y, rowVector.z, rowVector.w);
}
void Matrix4x4::SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3) {
elems[row][0] = m_r0;
elems[row][1] = m_r1;
elems[row][2] = m_r2;
elems[row][3] = m_r3;
}
Matrix4x4::Matrix4x4(const Quaternion &orientation, const Vector3 &translation) {
SetRotatePart(orientation);
SetTranslatePart(translation);
SetRow(3, 0, 0, 0, 1);
}
Matrix4x4 Matrix4x4::D3DOrthoProjLH(float n, float f, float h, float v) {
float p00 = 2.f / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = 1.f / (f-n); float p23 = n / (n-f);
float p30 = 0; float p31 = 0; float p32 = 0.f; float p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
/** This function generates an orthographic projection matrix that maps from
the Direct3D view space to the Direct3D normalized viewport space as follows:
In Direct3D view space, we assume that the camera is positioned at the origin (0,0,0).
The camera looks directly towards the positive Z axis (0,0,1).
The -X axis spans to the left of the screen, +X goes to the right.
-Y goes to the bottom of the screen, +Y goes to the top.
After the transformation, we're in the Direct3D normalized viewport space as follows:
(-1,-1,0) is the bottom-left corner of the viewport at the near plane.
(1,1,0) is the top-right corner of the viewport at the near plane.
(0,0,0) is the center point at the near plane.
Coordinates with z=1 are at the far plane.
Examples:
(0,0,n) maps to (0,0,0).
(0,0,f) maps to (0,0,1).
(-h/2, -v/2, n) maps to (-1, -1, 0).
(h/2, v/2, f) maps to (1, 1, 1).
*/
Matrix4x4 Matrix4x4::D3DOrthoProjRH(float n, float f, float h, float v)
{
// D3DOrthoProjLH and D3DOrthoProjRH differ from each other in that the third column is negated.
// This corresponds to LH = RH * In, where In is a diagonal matrix with elements [1 1 -1 1].
float p00 = 2.f / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = 1.f / (n-f); float p23 = n / (n-f);
float p30 = 0; float p31 = 0; float p32 = 0.f; float p33 = 1.f;
}
float Matrix4x4::At(int x, int y) const {
return elems[x][y];
}
Matrix4x4 Matrix4x4::operator*(const Matrix4x4 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0) + At(0, 3) * rhs.At(3, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1) + At(0, 3) * rhs.At(3, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2) + At(0, 3) * rhs.At(3, 2);
float r03 = At(0, 0) * rhs.At(0, 3) + At(0, 1) * rhs.At(1, 3) + At(0, 2) * rhs.At(2, 3) + At(0, 3) * rhs.At(3, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0) + At(1, 3) * rhs.At(3, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1) + At(1, 3) * rhs.At(3, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2) + At(1, 3) * rhs.At(3, 2);
float r13 = At(1, 0) * rhs.At(0, 3) + At(1, 1) * rhs.At(1, 3) + At(1, 2) * rhs.At(2, 3) + At(1, 3) * rhs.At(3, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0) + At(2, 3) * rhs.At(3, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1) + At(2, 3) * rhs.At(3, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2) + At(2, 3) * rhs.At(3, 2);
float r23 = At(2, 0) * rhs.At(0, 3) + At(2, 1) * rhs.At(1, 3) + At(2, 2) * rhs.At(2, 3) + At(2, 3) * rhs.At(3, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0) + At(3, 3) * rhs.At(3, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1) + At(3, 3) * rhs.At(3, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2) + At(3, 3) * rhs.At(3, 2);
float r33 = At(3, 0) * rhs.At(0, 3) + At(3, 1) * rhs.At(1, 3) + At(3, 2) * rhs.At(2, 3) + At(3, 3) * rhs.At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Vector4 Matrix4x4::operator[](int row) {
return Vector4{elems[row][0], elems[row][1], elems[row][2], elems[row][3]};
}
Matrix4x4 Matrix4x4::operator*(const Matrix3x3 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2);
float r03 = At(0, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2);
float r13 = At(1, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2);
float r23 = At(2, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2);
float r33 = At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Matrix4x4 Matrix4x4::operator+() const { return *this; }
Matrix4x4 Matrix4x4::FromTranslation(const Vector3 &rhs) {
return Matrix4x4(1.f, 0, 0, rhs.x,
0, 1.f, 0, rhs.y,
0, 0, 1.f, rhs.z,
0, 0, 0, 1.f);
}
Matrix4x4 Matrix4x4::Translate(const Vector3 &rhs) const {
return *this * FromTranslation(rhs);
}
Vector3 Matrix4x4::Transform(const Vector3 &rhs) const {
return Transform(rhs.x, rhs.y, rhs.z);
}
Vector3 Matrix4x4::Transform(float tx, float ty, float tz) const {
return Vector3(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) * tz + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) * tz + At(1, 3),
At(2, 0) * tx + At(2, 1) * ty + At(2, 2) * tz + At(2, 3));
}
Vector2 Matrix4x4::Transform(float tx, float ty) const {
return Vector2(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) + At(1, 3));
}
Vector2 Matrix4x4::Transform(const Vector2 &rhs) const {
return Transform(rhs.x, rhs.y);
}
Matrix4x4 &Matrix4x4::operator=(const Matrix3x3 &rhs) {
Set3x3Part(rhs);
SetTranslatePart(0,0,0);
SetRow(3, 0, 0, 0, 1);
return *this;
}
Matrix4x4 &Matrix4x4::operator=(const Quaternion &rhs) {
*this = rhs.ToMatrix4x4();
return *this;
}
float &Matrix4x4::At(int row, int col) {
return elems[row][col];
}
Matrix4x4 Matrix4x4::Inverse() const {
// Compute the inverse directly using Cramer's rule
// Warning: This method is numerically very unstable!
float d = Determinant();
d = 1.f / d;
float a11 = At(0, 0);float a12 = At(0, 1);float a13 = At(0, 2);float a14 = At(0, 3);
float a21 = At(1, 0);float a22 = At(1, 1);float a23 = At(1, 2);float a24 = At(1, 3);
float a31 = At(2, 0);float a32 = At(2, 1);float a33 = At(2, 2);float a34 = At(2, 3);
float a41 = At(3, 0);float a42 = At(3, 1);float a43 = At(3, 2);float a44 = At(3, 3);
Matrix4x4 i = {
d * (a22*a33*a44 + a23*a34*a42 + a24*a32*a43 - a22*a34*a43 - a23*a32*a44 - a24*a33*a42),
d * (a12*a34*a43 + a13*a32*a44 + a14*a33*a42 - a12*a33*a44 - a13*a34*a42 - a14*a32*a43),
d * (a12*a23*a44 + a13*a24*a42 + a14*a22*a43 - a12*a24*a43 - a13*a22*a44 - a14*a23*a42),
d * (a12*a24*a33 + a13*a22*a34 + a14*a23*a32 - a12*a23*a34 - a13*a24*a32 - a14*a22*a33),
d * (a21*a34*a43 + a23*a31*a44 + a24*a33*a41 - a21*a33*a44 - a23*a34*a41 - a24*a31*a43),
d * (a11*a33*a44 + a13*a34*a41 + a14*a31*a43 - a11*a34*a43 - a13*a31*a44 - a14*a33*a41),
d * (a11*a24*a43 + a13*a21*a44 + a14*a23*a41 - a11*a23*a44 - a13*a24*a41 - a14*a21*a43),
d * (a11*a23*a34 + a13*a24*a31 + a14*a21*a33 - a11*a24*a33 - a13*a21*a34 - a14*a23*a31),
d * (a21*a32*a44 + a22*a34*a41 + a24*a31*a42 - a21*a34*a42 - a22*a31*a44 - a24*a32*a41),
d * (a11*a34*a42 + a12*a31*a44 + a14*a32*a41 - a11*a32*a44 - a12*a34*a41 - a14*a31*a42),
d * (a11*a22*a44 + a12*a24*a41 + a14*a21*a42 - a11*a24*a42 - a12*a21*a44 - a14*a22*a41),
d * (a11*a24*a32 + a12*a21*a34 + a14*a22*a31 - a11*a22*a34 - a12*a24*a31 - a14*a21*a32),
d * (a21*a33*a42 + a22*a31*a43 + a23*a32*a41 - a21*a32*a43 - a22*a33*a41 - a23*a31*a42),
d * (a11*a32*a43 + a12*a33*a41 + a13*a31*a42 - a11*a33*a42 - a12*a31*a43 - a13*a32*a41),
d * (a11*a23*a42 + a12*a21*a43 + a13*a22*a41 - a11*a22*a43 - a12*a23*a41 - a13*a21*a42),
d * (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a11*a23*a32 - a12*a21*a33 - a13*a22*a31)
};
return i;
}
float Matrix4x4::Minor(int i, int j) const {
int r0 = SKIPNUM(0, i);
int r1 = SKIPNUM(1, i);
int r2 = SKIPNUM(2, i);
int c0 = SKIPNUM(0, j);
int c1 = SKIPNUM(1, j);
int c2 = SKIPNUM(2, j);
float a = At(r0, c0);
float b = At(r0, c1);
float c = At(r0, c2);
float d = At(r1, c0);
float e = At(r1, c1);
float f = At(r1, c2);
float g = At(r2, c0);
float h = At(r2, c1);
float k = At(r2, c2);
return a*e*k + b*f*g + c*d*h - a*f*h - b*d*k - c*e*g;
}
float Matrix4x4::Determinant() const {
return At(0, 0) * Minor(0,0) - At(0, 1) * Minor(0,1) + At(0, 2) * Minor(0,2) - At(0, 3) * Minor(0,3);
}
float Matrix4x4::Determinant3x3() const {
const float a = elems[0][0];
const float b = elems[0][1];
const float c = elems[0][2];
const float d = elems[1][0];
const float e = elems[1][1];
const float f = elems[1][2];
const float g = elems[2][0];
const float h = elems[2][1];
const float i = elems[2][2];
return a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g;
}
Matrix3x3 Matrix4x4::GetRotatePart() const {
return Matrix3x3 {
At(0, 0), At(0, 1), At(0, 2),
At(1, 0), At(1, 1), At(1, 2),
At(2, 0), At(2, 1), At(2, 2)
};
}
Matrix4x4 Matrix4x4::Transpose() const {
Matrix4x4 copy;
copy.elems[0][0] = elems[0][0]; copy.elems[0][1] = elems[1][0]; copy.elems[0][2] = elems[2][0]; copy.elems[0][3] = elems[3][0];
copy.elems[1][0] = elems[0][1]; copy.elems[1][1] = elems[1][1]; copy.elems[1][2] = elems[2][1]; copy.elems[1][3] = elems[3][1];
copy.elems[2][0] = elems[0][2]; copy.elems[2][1] = elems[1][2]; copy.elems[2][2] = elems[2][2]; copy.elems[2][3] = elems[3][2];
copy.elems[3][0] = elems[0][3]; copy.elems[3][1] = elems[1][3]; copy.elems[3][2] = elems[2][3]; copy.elems[3][3] = elems[3][3];
return copy;
}
Vector4 Matrix4x4::Diagonal() const {
return Vector4{At(0, 0), At(1,1), At(2,2), At(3,3)};
}
Vector3 Matrix4x4::Diagonal3() const {
return Vector3 { At(0, 0), At(1,1), At(2,2) };
}
Vector3 Matrix4x4::WorldX() const {
return GetColumn3(0);
}
Vector3 Matrix4x4::WorldY() const {
return GetColumn3(1);
}
Vector3 Matrix4x4::WorldZ() const {
return GetColumn3(2);
}
bool Matrix4x4::IsFinite() const {
for(int iy = 0; iy < Rows; ++iy)
for(int ix = 0; ix < Cols; ++ix)
if (!std::isfinite(elems[iy][ix]))
return false;
return true;
}
Vector3 Matrix4x4::GetColumn3(int index) const {
return Vector3{At(0, index), At(1, index), At(2, index)};
}
Vector2 Matrix4x4::operator*(const Vector2 &rhs) const { return this->Transform(rhs);}
Vector3 Matrix4x4::operator*(const Vector3 &rhs) const { return this->Transform(rhs);}
Vector4 Matrix4x4::operator*(const Vector4 &rhs) const { return this->Transform(rhs);}
Vector4 Matrix4x4::Transform(float tx, float ty, float tz, float tw) const {
return Transform({tx, ty, tz, tw});
}
Vector4 Matrix4x4::Transform(const Vector4 &rhs) const {
return Vector4(At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z + At(0, 3) * rhs.w,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z + At(1, 3) * rhs.w,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z + At(2, 3) * rhs.w,
At(3, 0) * rhs.x + At(3, 1) * rhs.y + At(3, 2) * rhs.z + At(3, 3) * rhs.w);
}
Vector3 Matrix4x4::GetTranslatePart() const {
return GetColumn3(3);
}
Matrix4x4 Matrix4x4::Scale(const Vector3& scale)
{
auto mat = *this;
mat.At(3, 0) *= scale.x;
mat.At(3, 1) *= scale.y;
mat.At(3, 2) *= scale.z;
return mat;
}
Matrix4x4
Matrix4x4::LookAt(const Vector3 &localFwd, const Vector3 &targetDir, const Vector3 &localUp, const Vector3 &worldUp) {
Matrix4x4 m;
m.Set3x3Part(Matrix3x3::LookAt(localFwd, targetDir, localUp, worldUp));
m.SetTranslatePart(0,0,0);
m.SetRow(3, 0,0,0,1);
return m;
}
Vector4 Matrix4x4::GetRow(int index) const {
return { At(index, 0), At(index, 1), At(index, 2), At(index, 3)};
}
Vector4 Matrix4x4::GetColumn(int index) const {
return { At(0, index), At(1, index), At(2, index), At(3, index)};
}
Vector3 Matrix4x4::GetRow3(int index) const {
return Vector3{ At(index, 0), At(index, 1), At(index, 2)};
}
void Matrix4x4::SwapColumns(int col1, int col2) {
Swap(At(0, col1), At(0, col2));
Swap(At(1, col1), At(1, col2));
Swap(At(2, col1), At(2, col2));
Swap(At(3, col1), At(3, col2));
}
void Matrix4x4::SwapRows(int row1, int row2) {
Swap(At(row1, 0), At(row2, 0));
Swap(At(row1, 1), At(row2, 1));
Swap(At(row1, 2), At(row2, 2));
Swap(At(row1, 3), At(row2, 3));
}
void Matrix4x4::SwapRows3(int row1, int row2) {
Swap(At(row1, 0), At(row2, 0));
Swap(At(row1, 1), At(row2, 1));
Swap(At(row1, 2), At(row2, 2));
}
void Matrix4x4::Pivot() {
int rowIndex = 0;
for(int col = 0; col < Cols; ++col)
{
int greatest = rowIndex;
// find the rowIndex k with k >= 1 for which Mkj has the largest absolute value.
for(int i = rowIndex; i < Rows; ++i)
if (std::abs(At(i, col)) > std::abs(At(greatest, col)))
greatest = i;
if (std::abs(At(greatest, col)) != 0)
{
if (rowIndex != greatest)
SwapRows(rowIndex, greatest); // the greatest now in rowIndex
ScaleRow(rowIndex, 1.f/At(rowIndex, col));
for(int r = 0; r < Rows; ++r)
if (r != rowIndex)
SetRow(r, GetRow(r) - GetRow(rowIndex) * At(r, col));
++rowIndex;
}
}
}
void Matrix4x4::ScaleColumn3(int col, float scalar) {
At(0, col) *= scalar;
At(1, col) *= scalar;
At(2, col) *= scalar;
}
void Matrix4x4::ScaleColumn(int col, float scalar) {
At(0, col) *= scalar;
At(1, col) *= scalar;
At(2, col) *= scalar;
At(3, col) *= scalar;
}
void Matrix4x4::ScaleRow3(int row, float scalar) {
At(row, 0) *= scalar;
At(row, 1) *= scalar;
At(row, 2) *= scalar;
}
void Matrix4x4::ScaleRow(int row, float scalar) {
At(row, 0) *= scalar;
At(row, 1) *= scalar;
At(row, 2) *= scalar;
At(row, 3) *= scalar;
}
Matrix4x4 Matrix4x4::OpenGLOrthoProjLH(float n, float f, float h, float v) {
/// Same as OpenGLOrthoProjRH, except that the camera looks towards +Z in view space, instead of -Z.
using f32 = float;
f32 p00 = 2.f / h; f32 p01 = 0; f32 p02 = 0; float p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f / v; f32 p12 = 0; float p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = 2.f / (f-n); float p23 = (f+n) / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 0; float p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLOrthoProjRH(float n, float f, float h, float v) {
using f32 = float;
f32 p00 = 2.f / h; f32 p01 = 0; f32 p02 = 0; f32 p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f / v; f32 p12 = 0; f32 p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = 2.f / (n-f); f32 p23 = (f+n) / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 0; f32 p33 = 1.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLPerspProjLH(float n, float f, float h, float v) {
// Same as OpenGLPerspProjRH, except that the camera looks towards +Z in view space, instead of -Z.
using f32 = float;
f32 p00 = 2.f *n / h; f32 p01 = 0; f32 p02 = 0; f32 p03 = 0.f;
f32 p10 = 0; f32 p11 = 2.f * n / v; f32 p12 = 0; f32 p13 = 0.f;
f32 p20 = 0; f32 p21 = 0; f32 p22 = (n+f) / (f-n); f32 p23 = 2.f*n*f / (n-f);
f32 p30 = 0; f32 p31 = 0; f32 p32 = 1.f; f32 p33 = 0.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4 Matrix4x4::OpenGLPerspProjRH(float n, float f, float h, float v) {
// In OpenGL, the post-perspective unit cube ranges in [-1, 1] in all X, Y and Z directions.
// See http://www.songho.ca/opengl/gl_projectionmatrix.html , unlike in Direct3D, where the
// Z coordinate ranges in [0, 1]. This is the only difference between D3DPerspProjRH and OpenGLPerspProjRH.
using f32 = float;
float p00 = 2.f *n / h; float p01 = 0; float p02 = 0; float p03 = 0.f;
float p10 = 0; float p11 = 2.f * n / v; float p12 = 0; float p13 = 0.f;
float p20 = 0; float p21 = 0; float p22 = (n+f) / (n-f); float p23 = 2.f*n*f / (n-f);
float p30 = 0; float p31 = 0; float p32 = -1.f; float p33 = 0.f;
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4::Matrix4x4(const float *data) {
assert(data);
At(0, 0) = data[0];
At(0, 1) = data[1];
At(0, 2) = data[2];
At(0, 3) = data[3];
At(1, 0) = data[4];
At(1, 1) = data[5];
At(1, 2) = data[6];
At(1, 3) = data[7];
At(2, 0) = data[8];
At(2, 1) = data[9];
At(2, 2) = data[10];
At(2, 3) = data[11];
At(3, 0) = data[12];
At(3, 1) = data[13];
At(3, 2) = data[14];
At(3, 3) = data[15];
}
bool Matrix4x4::ContainsProjection(float epsilon) const {
return GetRow(3).Equals(0.f, 0.f, 0.f, 1.f, epsilon) == false;
}
Vector4 Matrix4x4::Mul(const Vector4 &rhs) const {
return *this * rhs;
}
Vector3 Matrix4x4::Mul(const Vector3 &rhs) const {
return *this * rhs;
}
Vector2 Matrix4x4::Mul(const Vector2 &rhs) const {
return *this * rhs;
}
Vector4 Matrix4x4::operator[](int row) const {
return GetRow(row);
}
bool Matrix4x4::HasUniformScale(float epsilon) const {
Vector3 scale = ExtractScale();
return Math::EqualAbs(scale.x, scale.y, epsilon) && Math::EqualAbs(scale.x, scale.z, epsilon);
}
Vector3 Matrix4x4::ExtractScale() const {
return {GetColumn3(0).Length(), GetColumn3(1).Length(), GetColumn3(2).Length()};
}
bool Matrix4x4::IsColOrthogonal(float epsilon) const {
return IsColOrthogonal3(epsilon);
}
bool Matrix4x4::IsRowOrthogonal(float epsilon) const {
return IsRowOrthogonal3(epsilon);
}
bool Matrix4x4::IsColOrthogonal3(float epsilon) const {
return GetColumn(0).IsPerpendicular(GetColumn(1), epsilon)
&& GetColumn(0).IsPerpendicular(GetColumn(2), epsilon)
&& GetColumn(1).IsPerpendicular(GetColumn(2), epsilon);
}
bool Matrix4x4::IsRowOrthogonal3(float epsilon) const {
return GetRow(0).IsPerpendicular(GetRow(1), epsilon)
&& GetRow(0).IsPerpendicular(GetRow(2), epsilon)
&& GetRow(1).IsPerpendicular(GetRow(2), epsilon);
}
Vector4 Matrix4x4::Col(int i) const { return GetColumn(i);}
Vector4 Matrix4x4::Row(int i) const { return GetRow(i);}
Vector4 Matrix4x4::Col3(int i) const { return GetColumn3(i);}
Vector4 Matrix4x4::Row3(int i) const { return GetRow3(i);}
Vector3 Matrix4x4::TransformDir(float tx, float ty, float tz) const
{
assert(!this->ContainsProjection()); // This function does not divide by w or output it, so cannot have projection.
return Vector3(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) * tz,
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) * tz,
At(2, 0) * tx + At(2, 1) * ty + At(2, 2) * tz);
}
void Matrix4x4::InverseOrthonormal()
{
assert(!ContainsProjection());
// a) Transpose the top-left 3x3 part in-place to produce R^t.
Swap(elems[0][1], elems[1][0]);
Swap(elems[0][2], elems[2][0]);
Swap(elems[1][2], elems[2][1]);
// b) Replace the top-right 3x1 part by computing R^t(-T).
SetTranslatePart(TransformDir(-At(0, 3), -At(1, 3), -At(2, 3)));
}
void Matrix4x4::SetCol(int col, const float *data) {
assert(data != nullptr);
SetCol(col, data[0], data[1], data[2], data[3]);
}
void Matrix4x4::SetCol(int column, float m_0c, float m_1c, float m_2c, float m_3c)
{
assert(column >= 0);
assert(column < Cols);
assert(std::isfinite(m_0c));
assert(std::isfinite(m_1c));
assert(std::isfinite(m_2c));
assert(std::isfinite(m_3c));
At(0, column) = m_0c;
At(1, column) = m_1c;
At(2, column) = m_2c;
At(3, column) = m_3c;
}
void Matrix4x4::SetCol(int column, const Vector3 &columnVector, float m_3c)
{
SetCol(column, columnVector.x, columnVector.y, columnVector.z, m_3c);
}
void Matrix4x4::SetCol(int column, const Vector4 &columnVector)
{
SetCol(column, columnVector.x, columnVector.y, columnVector.z, columnVector.w);
}
}

View File

@@ -0,0 +1,204 @@
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
Quaternion Quaternion::operator-() const
{
return {-x, -y, -z, -w};
}
Quaternion::Quaternion(const Matrix3x3 &rotationMtrx) {}
Quaternion::Quaternion(const Matrix4x4 &rotationMtrx) {}
Vector3 Quaternion::GetWorldX() const { return Transform(1.f, 0.f, 0.f); }
Vector3 Quaternion::GetWorldY() const { return Transform(0.f, 1.f, 0.f); }
Vector3 Quaternion::GetWorldZ() const { return Transform(0.f, 0.f, 1.f); }
Vector3 Quaternion::Transform(const Vector3 &vec) const {
Matrix3x3 mat = this->ToMatrix3x3();
return mat * vec;
}
Vector3 Quaternion::Transform(float X, float Y, float Z) const {
return Transform(Vector3{X, Y, Z});
}
Vector4 Quaternion::Transform(const Vector4 &vec) const {
return Vector4(Transform(vec.x, vec.y, vec.z), vec.w);
}
Vector4 Quaternion::Transform(float X, float Y, float Z, float W) const {
return Transform(Vector4(X, Y, Z, W));
}
Quaternion Quaternion::Lerp(const Quaternion &b, float t) const {
float angle = this->Dot(b);
if (angle >= 0.f) // Make sure we rotate the shorter arc
return (*this * (1.f - t) + b * t).Normalize();
else
return (*this * (t - 1.f) + b * t).Normalize();
}
void Quaternion::SetFromAxisAngle(const Vector3 &axis, float angle) {
float sinz, cosz;
sinz = std::sin(angle*0.5f);
cosz = std::cos(angle*0.5f);
x = axis.x * sinz;
y = axis.y * sinz;
z = axis.z * sinz;
w = cosz;
}
void Quaternion::SetFromAxisAngle(const Vector4 &axis, float angle)
{
SetFromAxisAngle(Vector3(axis.x, axis.y, axis.z), angle);
}
Quaternion Quaternion::operator*(float scalar) const {
return Quaternion(x * scalar, y * scalar, z * scalar, w * scalar);
}
Quaternion Quaternion::operator+() const { return *this; }
Quaternion::Quaternion() {}
Quaternion::Quaternion(float X, float Y, float Z, float W) : Vector4(X,Y,Z,W) {}
// TODO: implement
float Quaternion::Dot(const Quaternion &rhs) const {
return x * rhs.x + y * rhs.y + z * rhs.z + w * rhs.w;
}
Quaternion::Quaternion(Vector4 vector4) {
}
Quaternion Quaternion::Normalize() const {
float length = Length();
if (length < 1e-4f)
return {0,0,0,0};
float reciprocal = 1.f / length;
return {
x * reciprocal,
y * reciprocal,
z * reciprocal,
w * reciprocal
};
}
Quaternion Quaternion::Conjugate() const {
return { -x, -y, -z, w };
}
Quaternion Quaternion::Inverse() const {
return Conjugate();
}
Quaternion Quaternion::Slerp(const Quaternion &q2, float t) const {
float angle = this->Dot(q2);
float sign = 1.f;
if (angle < 0.f)
{
angle = -angle;
sign = -1.f;
}
float a;
float b;
if (angle < 0.999)
{
// angle = Acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;
float ta = t*angle;
// Not using a lookup table, manually compute the two sines by using a very rough approximation.
float ta2 = ta*ta;
b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
a = angle - ta;
float a2 = a*a;
a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
}
else // If angle is close to taking the denominator to zero, resort to linear interpolation (and normalization).
{
a = 1.f - t;
b = t;
}
// Lerp and renormalize.
return (*this * (a * sign) + q2 * b).Normalize();
}
AxisAngle Quaternion::ToAxisAngle() const {
float halfAngle = std::acos(w);
float angle = halfAngle * 2.f;
// TODO: Can Implement Fast Inverse Sqrt Here
float reciprocalSinAngle = 1.f / std::sqrt(1.f - w*w);
Vector3 axis = {
x*reciprocalSinAngle,
y*reciprocalSinAngle,
z*reciprocalSinAngle
};
return AxisAngle(axis, angle);
}
float Quaternion::AngleBetween(const Quaternion &target) const {
Quaternion delta = target / *this;
return delta.Normalize().Angle();
}
Quaternion Quaternion::operator/(const Quaternion &rhs) const {
return {
x*rhs.w - y*rhs.z + z*rhs.y - w*rhs.x,
x*rhs.z + y*rhs.w - z*rhs.x - w*rhs.y,
-x*rhs.y + y*rhs.x + z*rhs.w - w*rhs.z,
x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w
};
}
Matrix3x3 Quaternion::ToMatrix3x3() const {
return {
1 - 2 *(y*y) - 2*(z*z), 2*x*y - 2*z*w, 2*x*z + 2*y*w,
2*x*y + 2*z*w, 1-2*x*x - 2*z*z, 2*y*z - 2*x*w,
2*x*z - 2*y*w, 2*y*z + 2*x*w, 1-2*x*x - 2*y*y
};
}
Quaternion Quaternion::operator+(const Quaternion &rhs) const {
return {
x + rhs.x, y + rhs.y, z + rhs.z,w + rhs.w
};
}
Matrix4x4 Quaternion::ToMatrix4x4() const {
return Matrix4x4(*this);
}
Matrix4x4 Quaternion::ToMatrix4x4(const Vector3 &translation) const {
return {*this, translation};
}
float Quaternion::GetAngle() const {
return std::acos(w) * 2.f;
}
Vector3 Quaternion::GetAxis() const {
float rcpSinAngle = 1 - (std::sqrt(1 - w * w));
return Vector3(x, y, z) * rcpSinAngle;
}
Quaternion::Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion::Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
}

View File

@@ -0,0 +1,30 @@
#include <J3ML/LinearAlgebra/Transform2D.h>
namespace J3ML::LinearAlgebra {
const Transform2D Transform2D::Identity = Transform2D({0, 0}, {1, 1}, {0,0}, {0,0}, 0);
const Transform2D Transform2D::FlipX = Transform2D({0, 0}, {-1, 1}, {0,0}, {0,0}, 0);
const Transform2D Transform2D::FlipY = Transform2D({0, 0}, {1, -1}, {0,0}, {0,0}, 0);
Vector2 Transform2D::Transform(const Vector2 &input) const {
return transformation.Transform(input);
}
Transform2D::Transform2D(const Matrix3x3 &transform) : transformation(transform) { }
Transform2D::Transform2D(const Vector2& pos, const Vector2& scale, const Vector2& origin, const Vector2& skew, float rotation) {
transformation = Matrix3x3(pos.x, pos.y, rotation, scale.x, scale.y, origin.x, origin.y, skew.x, skew.y);
}
Transform2D Transform2D::Translate(float x, float y) const {
auto copy = Matrix3x3(transformation);
copy.SetAt(0, 0, transformation.At(0, 0) + x);
copy.SetAt(0, 1, transformation.At(0, 1) + y);
return Transform2D(copy);
}
Transform2D Transform2D::Translate(const LinearAlgebra::Vector2 &input) const {
return Translate(input.x, input.y);
}
}

View File

@@ -0,0 +1,3 @@
//
// Created by josh on 12/26/2023.
//

View File

@@ -0,0 +1,347 @@
#include <J3ML/LinearAlgebra/Vector2.h>
#include <cassert>
#include <algorithm>
#include <valarray>
#include <iostream>
namespace J3ML::LinearAlgebra {
Vector2::Vector2(): x(0), y(0)
{}
Vector2::Vector2(float X, float Y): x(X), y(Y)
{}
Vector2::Vector2(const Vector2& rhs): x(rhs.x), y(rhs.y)
{}
float Vector2::operator[](std::size_t index) const
{
return At(index);
}
float &Vector2::operator[](std::size_t index)
{
return At(index);
}
bool Vector2::IsWithinMarginOfError(const Vector2& rhs, float margin) const
{
return this->Distance(rhs) <= margin;
}
bool Vector2::operator==(const Vector2& rhs) const
{
return this->IsWithinMarginOfError(rhs);
}
bool Vector2::operator!=(const Vector2& rhs) const
{
return this->IsWithinMarginOfError(rhs) == false;
}
Vector2 Vector2::Min(const Vector2& min) const
{
return {
std::min(this->x, min.x),
std::min(this->y, min.y)
};
}
Vector2 Vector2::Max(const Vector2& max) const
{
return {
std::max(this->x, max.x),
std::max(this->y, max.y)
};
}
Vector2 Vector2::Clamp(const Vector2& min, const Vector2& max) const
{
return {
std::clamp(this->x, min.x, max.x),
std::clamp(this->y, min.y, max.y)
};
}
float Vector2::Distance(const Vector2& to) const
{
return ((*this)-to).Magnitude();
}
float Vector2::Length() const
{
return std::sqrt(LengthSquared());
}
float Vector2::LengthSquared() const
{
return (x*x + y*y);
}
float Vector2::Magnitude() const
{
return std::sqrt(LengthSquared());
}
float Vector2::Dot(const Vector2& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x + a.y * b.y;
}
Vector2 Vector2::Project(const Vector2& rhs) const
{
float scalar = this->Dot(rhs) / (rhs.Magnitude()*rhs.Magnitude());
return rhs * scalar;
}
Vector2 Vector2::Normalize() const
{
if (Length() > 0)
return {
x / Length(),
y / Length()
};
else
return {0,0};
}
Vector2 Vector2::Lerp(const Vector2& rhs, float alpha) const
{
return this->operator*(1.0f - alpha) + (rhs * alpha);
}
float Vector2::AngleBetween(const Vector2& rhs) const
{
auto numer = this->Dot(rhs);
auto denom = this->Magnitude() * rhs.Magnitude();
return std::acos(numer / denom);
}
float Vector2::AngleBetween(const Vector2& lhs, const Vector2& rhs)
{ return lhs.AngleBetween(rhs); }
Vector2 Vector2::operator+(const Vector2& rhs) const
{
return {this->x + rhs.x, this->y + rhs.y};
}
Vector2 Vector2::operator-(const Vector2& rhs) const
{
return {this->x - rhs.x, this->y - rhs.y};
}
Vector2 Vector2::operator*(float rhs) const
{
return {
this->x * rhs,
this->y * rhs
};
}
Vector2 Vector2::operator/(float rhs) const
{
return {
this->x / rhs,
this->y / rhs
};
}
Vector2 Vector2::operator-() const
{
return {-x, -y};
}
const Vector2 Vector2::Zero = {0, 0};
const Vector2 Vector2::Up = {0, -1};
const Vector2 Vector2::Down = {0, 1};
const Vector2 Vector2::Left = {-1, 0};
const Vector2 Vector2::Right = {1, 0};
const Vector2 Vector2::NaN = {NAN, NAN};
const Vector2 Vector2::Infinity = {INFINITY, INFINITY};
float Vector2::GetX() const { return x; }
float Vector2::GetY() const { return y; }
float Vector2::LengthSquared(const Vector2 &of) { return of.LengthSquared(); }
Vector2 Vector2::Min(const Vector2 &value, const Vector2 &minimum) { return value.Min(minimum); }
Vector2 Vector2::Max(const Vector2 &value, const Vector2 &maximum) { return value.Max(maximum);}
float Vector2::Length(const Vector2 &of) { return of.Length(); }
void Vector2::SetX(float newX) { x = newX;}
void Vector2::SetY(float newY) { y = newY; }
bool Vector2::IsNormalized(float epsilonSq) const {
return std::abs(LengthSquared() - 1.f) <= epsilonSq;
}
bool Vector2::IsZero(float epsilonSq) const {
return LengthSquared() <= epsilonSq;
}
bool Vector2::IsPerpendicular(const Vector2 &other, float epsilonSq) const {
float dot = Dot(other);
return dot*dot <= epsilonSq * LengthSquared() * other.LengthSquared();
}
Vector2 Vector2::Normalize(const Vector2 &of) { return of.Normalize(); }
Vector2 Vector2::Project(const Vector2 &lhs, const Vector2 &rhs) { return lhs.Project(rhs); }
float Vector2::Dot(const Vector2 &lhs, const Vector2 &rhs) { return lhs.Dot(rhs); }
float Vector2::Magnitude(const Vector2 &of) { return of.Magnitude();}
Vector2 Vector2::Lerp(const Vector2 &lhs, const Vector2 &rhs, float alpha) { return lhs.Lerp(rhs, alpha); }
Vector2 Vector2::Div(const Vector2 &lhs, float rhs) {
return lhs.Div(rhs);
}
Vector2 Vector2::Mul(const Vector2 &lhs, float rhs) {
return lhs.Mul(rhs);
}
Vector2 Vector2::Sub(const Vector2 &lhs, const Vector2 &rhs) {
return lhs.Sub(rhs);
}
Vector2 Vector2::Add(const Vector2 &lhs, const Vector2 &rhs) {
return lhs.Add(rhs);
}
Vector2 Vector2::Add(const Vector2 &rhs) const {
return *this + rhs;
}
Vector2 Vector2::Sub(const Vector2 &rhs) const {
return *this - rhs;
}
Vector2 Vector2::Mul(float scalar) const {
return *this * scalar;
}
Vector2 Vector2::Div(float scalar) const {
return *this / scalar;
}
bool Vector2::IsFinite(const Vector2 &v) {
return v.IsFinite();
}
float Vector2::MinElement() const {
return std::min(x, y);
}
float Vector2::MaxElement() const {
return std::max(x, y);
}
Vector2 Vector2::Mul(const Vector2 &v) const {
return {this->x*v.x, this->y*v.y};
}
bool Vector2::IsFinite() const {
return std::isfinite(x) && std::isfinite(y);
}
Vector2 Vector2::Div(const Vector2 &v) const {
return {this->x/v.x, this->y/v.y};
}
Vector2 Vector2::Abs() const { return {std::abs(x), std::abs(y)};}
float *Vector2::ptr() {
return &x;
}
const float *Vector2::ptr() const { return &x;}
const float Vector2::At(std::size_t index) const {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
float &Vector2::At(std::size_t index) {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
Vector2 &Vector2::operator/=(float scalar) {
x /= scalar;
y /= scalar;
return *this;
}
Vector2 &Vector2::operator*=(float scalar) {
x *= scalar;
y *= scalar;
return *this;
}
Vector2 &Vector2::operator-=(const Vector2 &rhs) // Subtracts a vector from this vector, in-place
{
x -= rhs.x;
y -= rhs.y;
return *this;
}
Vector2 &Vector2::operator+=(const Vector2 &rhs) // Adds a vector to this vector, in-place.
{
x += rhs.x;
y += rhs.y;
return *this;
}
Vector2 &Vector2::operator=(const Vector2 &rhs) {
x = rhs.x;
y = rhs.y;
return *this;
}
Vector2::Vector2(const float *data) {
assert(data);
x = data[0];
y = data[1];
}
Vector2::Vector2(float scalar) {
x = scalar;
y = scalar;
}
float Vector2::DistanceSq(const Vector2 &to) const {
return (*this-to).LengthSquared();
}
float Vector2::DistanceSq(const Vector2 &from, const Vector2 &to) {
return (from-to).LengthSquared();
}
bool Vector2::OrientedCCW(const Vector2 &a, const Vector2 &b, const Vector2 &c)
{
// Compute the determinant
// | ax ay 1 |
// | bx by 1 |
// | cx cy 1 |
// See Christer Ericson, Real-Time Collision Detection, p.32.
return (a.x-c.x)*(b.y-c.y) - (a.y-c.y)*(b.x-c.x) >= 0.f;
}
}

View File

@@ -0,0 +1,505 @@
#include <J3ML/LinearAlgebra/Vector3.h>
#include <algorithm>
#include <cassert>
#include <cmath>
namespace J3ML::LinearAlgebra {
const Vector3 Vector3::Zero = {0,0,0};
const Vector3 Vector3::Up = {0, -1, 0};
const Vector3 Vector3::Down = {0, 1, 0};
const Vector3 Vector3::Left = {-1, 0, 0};
const Vector3 Vector3::Right = {1, 0, 0};
const Vector3 Vector3::Forward = {0, 0, -1};
const Vector3 Vector3::Backward = {0, 0, 1};
const Vector3 Vector3::NaN = {NAN, NAN, NAN};
const Vector3 Vector3::Infinity = {INFINITY, INFINITY, INFINITY};
const Vector3 Vector3::NegativeInfinity = {-INFINITY, -INFINITY, -INFINITY};
Vector3 Vector3::operator+(const Vector3& rhs) const
{
return {this->x + rhs.x, this->y + rhs.y, this->z + rhs.z};
}
Vector3 Vector3::operator-(const Vector3& rhs) const
{
return {
this->x- rhs.x,
this->y-rhs.y,
this->z-rhs.z
};
}
Vector3 Vector3::operator*(float rhs) const
{
return {
this->x * rhs,
this->y * rhs,
this->z * rhs
};
}
Vector3 Vector3::operator/(float rhs) const
{
return {
this->x / rhs,
this->y / rhs,
this->z / rhs
};
}
Vector3 Vector3::operator-() const
{
return {-x, -y, -z};
}
Vector3::Vector3(): x(0), y(0), z(0) {}
Vector3::Vector3(float X, float Y, float Z): x(X), y(Y), z(Z) {}
Vector3::Vector3(const Vector3& rhs) : x(rhs.x), y(rhs.y), z(rhs.z) {}
Vector3& Vector3::operator=(const Vector3& rhs)
{
this->x = rhs.x;
this->y = rhs.y;
this->z = rhs.z;
return *this;
}
float Vector3::operator[](std::size_t index) const
{
assert(index < 3);
if (index==0) return x;
if (index==1) return y;
if (index==2) return z;
return 0;
}
float &Vector3::operator[](std::size_t index)
{
assert(index < 3);
if (index == 0) return x;
if (index == 1) return y;
if (index == 2) return z;
}
bool Vector3::IsWithinMarginOfError(const Vector3& rhs, float margin) const
{
return this->Distance(rhs) <= margin;
}
bool Vector3::operator==(const Vector3& rhs) const
{
return this->IsWithinMarginOfError(rhs);
}
bool Vector3::operator!=(const Vector3& rhs) const
{
return this->IsWithinMarginOfError(rhs) == false;
}
Vector3 Vector3::Min(const Vector3& min) const
{
return {
std::min(this->x, min.x),
std::min(this->y, min.y),
std::min(this->z, min.z)
};
}
Vector3 Vector3::Max(const Vector3& max) const
{
return {
std::max(this->x, max.x),
std::max(this->y, max.y),
std::max(this->z, max.z)
};
}
Vector3 Vector3::Clamp(const Vector3& min, const Vector3& max) const
{
return {
std::clamp(this->x, min.x, max.x),
std::clamp(this->y, min.y, max.y),
std::clamp(this->z, min.z, max.z)
};
}
float Vector3::Distance(const Vector3& to) const
{
return ((*this)-to).Magnitude();
}
float Vector3::Length() const
{
return std::sqrt(LengthSquared());
}
float Vector3::LengthSquared() const
{
return (x*x + y*y + z*z);
}
float Vector3::Magnitude() const
{
return std::sqrt(x*x + y*y + z*z);
}
float Vector3::Dot(const Vector3& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x +
a.y * b.y +
a.z * b.z;
}
Vector3 Vector3::Project(const Vector3& rhs) const
{
float scalar = this->Dot(rhs) / (rhs.Magnitude()*rhs.Magnitude());
return rhs * scalar;
}
Vector3 Vector3::Cross(const Vector3& rhs) const
{
return {
this->y * rhs.z - this->z * rhs.y,
this->z * rhs.x - this->x * rhs.z,
this->x * rhs.y - this->y * rhs.x
};
}
Vector3 Vector3::Normalize() const
{
if (Length() > 0)
return {
x / Length(),
y / Length(),
z / Length()
};
else
return {0,0,0};
}
Vector3 Vector3::Lerp(const Vector3& goal, float alpha) const
{
return this->operator*(1.0f - alpha) + (goal * alpha);
}
float Vector3::GetX() const { return x;}
float Vector3::GetY() const { return y;}
float Vector3::GetZ() const { return z;}
void Vector3::SetX(float newX) { x = newX;}
void Vector3::SetY(float newY) { y = newY;}
void Vector3::SetZ(float newZ) { z = newZ;}
Vector3 Vector3::Min(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Min(rhs);
}
Vector3 Vector3::Max(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Max(rhs);
}
Vector3 Vector3::Clamp(const Vector3 &min, const Vector3 &input, const Vector3 &max) {
return input.Clamp(min, max);
}
float Vector3::Distance(const Vector3 &from, const Vector3 &to) {
return from.Distance(to);
}
float Vector3::Length(const Vector3 &of) {
return of.Length();
}
float Vector3::LengthSquared(const Vector3 &of) {
return of.LengthSquared();
}
bool Vector3::IsPerpendicular(const Vector3 &other, float epsilonSq) const {
float dot = Dot(other);
return dot*dot <= epsilonSq * LengthSquared() * other.LengthSquared();
}
bool Vector3::IsZero(float epsilonSq) const {
return LengthSquared() <= epsilonSq;
}
bool Vector3::IsNormalized(float epsilonSq) const {
return std::abs(LengthSquared()-1.f) <= epsilonSq;
}
Vector3 Vector3::Cross(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Cross(rhs);
}
Vector3 Vector3::Normalize(const Vector3 &targ) {
return targ.Normalize();
}
Vector3 Vector3::Project(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Project(rhs);
}
float Vector3::Dot(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Dot(rhs);
}
float Vector3::Magnitude(const Vector3 &of) {
return of.Magnitude();
}
Vector3 Vector3::Lerp(const Vector3 &lhs, const Vector3 &rhs, float alpha) {
return lhs.Lerp(rhs, alpha);
}
Vector3 Vector3::Add(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Add(rhs);
}
Vector3 Vector3::Add(const Vector3 &rhs) const {
return *this + rhs;
}
Vector3 Vector3::Sub(const Vector3 &rhs) const {
return *this - rhs;
}
Vector3 Vector3::Sub(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Sub(rhs);
}
Vector3 Vector3::Mul(float scalar) const {
return *this * scalar;
}
Vector3 Vector3::Mul(const Vector3 &lhs, float rhs) {
return lhs.Mul(rhs);
}
Vector3 Vector3::Div(float scalar) const {
return *this / scalar;
}
Vector3 Vector3::Div(const Vector3 &lhs, float rhs) {
return lhs.Div(rhs);
}
Angle2D Vector3::AngleBetween(const Vector3 &rhs) const {
const auto Pi_x_180 = 180.f / M_PI;
auto dist = this->Distance(rhs);
float x = -(asinf((rhs.y - this->y) / dist));
float y = (atan2f(rhs.x - this->x,rhs.z - this->z));
return {x, y};
}
Angle2D Vector3::AngleBetween(const Vector3 &lhs, const Vector3 &rhs) // TODO: 3D Angle representation?
{
return lhs.AngleBetween(rhs);
}
Vector3 Vector3::Direction(const Vector3 &rhs) {
float x = (cos(Math::Radians(rhs.y)) * cos(Math::Radians(rhs.x)));
float y = -sin(Math::Radians(rhs.x));
float z = (sin(Math::Radians(rhs.y)) * cos(Math::Radians(rhs.x)));
return {x, y, z};
}
Vector3 Vector3::Abs() const {
return {std::abs(x), std::abs(y), std::abs(z)};
}
float *Vector3::ptr() {
return &x;
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b, Vector3 &c) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
c = c - c.ProjectToNorm(a);
c = c - c.ProjectToNorm(b);
c = c.Normalize();
}
Vector3 Vector3::ProjectToNorm(const Vector3 &direction) const {
return direction * this->Dot(direction);
}
bool Vector3::IsFinite() const {
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
}
Vector3::Vector3(const float *data) {
x = data[0];
y = data[1];
z = data[2];
}
Vector3 &Vector3::operator+=(const Vector3 &rhs) {
x += rhs.x;
y += rhs.y;
z += rhs.z;
return *this;
}
Vector3 &Vector3::operator-=(const Vector3 &rhs) {
x -= rhs.x;
y -= rhs.y;
z -= rhs.z;
return *this;
}
Vector3 &Vector3::operator*=(float scalar) {
x *= scalar;
y *= scalar;
z *= scalar;
return *this;
}
Vector3 &Vector3::operator/=(float scalar) {
x /= scalar;
y /= scalar;
z /= scalar;
return *this;
}
float Vector3::MinElement() const {
return std::min(x, std::min(y, z));
}
bool Vector3::AreOrthonormal(const Vector3 &a, const Vector3 &b, float epsilon) {
return a.IsPerpendicular(b, epsilon) && a.IsNormalized(epsilon*epsilon) && b.IsNormalized(epsilon*epsilon);
}
Vector3 Vector3::Mul(const Vector3 &rhs) const {
return {
this->x * rhs.x,
this->y * rhs.y,
this->z * rhs.z
};
}
Vector3 Vector3::Div(const Vector3 &v) const {
return {
this->x/v.x,
this->y/v.y,
this->z/v.z
};
}
Vector3 Vector3::Abs(const Vector3 &rhs) {
return rhs.Abs();
}
bool Vector3::Equals(const Vector3 &rhs, float epsilon) const {
return std::abs(x - rhs.x) < epsilon &&
std::abs(y - rhs.y) < epsilon &&
std::abs(z - rhs.z) < epsilon;
}
bool Vector3::Equals(float _x, float _y, float _z, float epsilon) const {
return std::abs(x - _x) < epsilon &&
std::abs(y - _y) < epsilon &&
std::abs(z - _z) < epsilon;
}
Vector3 Vector3::Min(const Vector3 &a, const Vector3 &b, const Vector3 &c) {
return {
std::min(a.x, std::min(b.x, c.x)),
std::min(a.y, std::min(b.y, c.y)),
std::min(a.z, std::min(b.z, c.z))
};
}
Vector3 Vector3::Max(const Vector3 &a, const Vector3 &b, const Vector3 &c) {
return {
std::max(a.x, std::max(b.x, c.x)),
std::max(a.y, std::max(b.y, c.y)),
std::max(a.z, std::max(b.z, c.z))
};
}
Vector3 Vector3::Perpendicular(const Vector3 &hint, const Vector3 &hint2) const {
assert(!this->IsZero());
assert(hint.IsNormalized());
assert(hint2.IsNormalized());
Vector3 v = this->Cross(hint);
float len = v.TryNormalize();
}
float Vector3::TryNormalize() {
assert(IsFinite());
float length = Length();
if (length > 1e-6f)
{
*this *= 1.f / length;
return length;
}
else
{
Set(1.f, 0.f, 0.f); // We will always produce a normalized vector.
return 0; // But signal failure, so user knows we have generated an arbitrary normalization.
}
}
float Vector3::At(int index) const {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
float &Vector3::At(int index) {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
void Vector3::Set(float d, float d1, float d2) {
x = d;
y = d1;
z = d2;
}
Vector3::Vector3(const Vector2& XY, float Z) {
x = XY.x;
y = XY.y;
z = Z;
}
Vector3::Vector3(float scalar) {
x = scalar;
y = scalar;
z = scalar;
}
float Vector3::DistanceSquared(const Vector3 &to) const {
return (*this-to).LengthSquared();
}
float Vector3::DistanceSquared(const Vector3 &from, const Vector3 &to) {
return from.DistanceSquared(to);
}
}

View File

@@ -0,0 +1,204 @@
#pragma region vector4
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <cmath>
#include <algorithm>
namespace J3ML::LinearAlgebra {
const Vector4 Vector4::Zero = {0,0,0,0};
const Vector4 Vector4::NaN = {NAN, NAN, NAN, NAN};
Vector4::Vector4(): x(0), y(0), z(0), w(0)
{}
Vector4::Vector4(float X, float Y, float Z, float W): x(X),y(Y),z(Z),w(W)
{ }
bool Vector4::operator==(const Vector4& rhs) const
{
return this->IsWithinMarginOfError(rhs);
}
bool Vector4::operator!=(const Vector4& rhs) const
{
return this->IsWithinMarginOfError(rhs) == false;
}
Vector4 Vector4::Min(const Vector4& min) const
{
return {
std::min(this->x, min.x),
std::min(this->y, min.y),
std::min(this->z, min.z),
std::min(this->w, min.w)
};
}
Vector4 Vector4::Max(const Vector4& max) const
{
return {
std::max(this->x, max.x),
std::max(this->y, max.y),
std::max(this->z, max.z),
std::max(this->w, max.w)
};
}
Vector4 Vector4::Clamp(const Vector4& min, const Vector4& max) const
{
return {
std::clamp(this->x, min.x, max.x),
std::clamp(this->y, min.y, max.y),
std::clamp(this->z, min.z, max.z),
std::clamp(this->w, min.w, max.w)
};
}
float Vector4::Distance(const Vector4& to) const
{
return ( (*this) - to ).Magnitude();
}
float Vector4::Length() const
{
return std::sqrt(LengthSquared());
}
float Vector4::LengthSquared() const
{
return (x*x + y*y + z*z + w*w);
}
float Vector4::Magnitude() const
{
return std::sqrt(x*x + y*y + z*z + w*w);
}
float Vector4::Dot(const Vector4& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x +
a.y * b.y +
a.z * b.z +
a.w * b.w;
}
Vector4 Vector4::Project(const Vector4& rhs) const
{
float scalar = this->Dot(rhs) / (rhs.Magnitude()* rhs.Magnitude());
return rhs * scalar;
}
Vector4 Vector4::Normalize() const
{
if (Length() > 0)
return {
x / Length(),
y / Length(),
z / Length(),
w / Length()
};
else
return {0,0,0,0};
}
Vector4 Vector4::Lerp(const Vector4& goal, float alpha) const
{
return this->operator*(1.0f - alpha) + (goal * alpha);
}
Vector4 Vector4::operator+(const Vector4& rhs) const
{
return {x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w};
}
Vector4 Vector4::operator-(const Vector4& rhs) const
{
return {x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w};
}
Vector4 Vector4::operator*(float rhs) const {
return {
this->x * rhs,
this->y * rhs,
this->z * rhs,
this->w * rhs
};
}
bool Vector4::IsWithinMarginOfError(const Vector4 &rhs, float margin) const {
return this->Distance(rhs) <= margin;
}
Vector4::Vector4(const Vector3 &xyz, float w) : x(xyz.x), y(xyz.y), z(xyz.z), w(w)
{
}
Vector4 &Vector4::operator=(const Vector4 &rhs) {
x = rhs.x;
y = rhs.y;
z = rhs.z;
w = rhs.w;
return *this;
}
bool Vector4::Equals(const Vector4 &rhs, float epsilon) const {
return std::abs(x - rhs.x) < epsilon &&
std::abs(y - rhs.y) < epsilon &&
std::abs(z - rhs.z) < epsilon &&
std::abs(w - rhs.w) < epsilon;
}
bool Vector4::Equals(float _x, float _y, float _z, float _w, float epsilon) const {
return std::abs(x - _x) < epsilon &&
std::abs(y - _y) < epsilon &&
std::abs(z - _z) < epsilon &&
std::abs(w - _w) < epsilon;
}
float Vector4::operator[](std::size_t index) const {
assert(index < 4);
if (index==0) return x;
if (index==1) return y;
if (index==2) return z;
if (index==3) return w;
return 0;
}
float &Vector4::operator[](std::size_t index) {
assert(index < 4);
if (index == 0) return x;
if (index == 1) return y;
if (index == 2) return z;
if (index == 3) return w;
}
float Vector4::LengthSqXYZ() const {
return x*x * y*y * z*z;
}
Vector4 Vector4::Cross3(const Vector3 &rhs) const {
Vector4 dst;
dst.x = y * rhs.z - z * rhs.y;
dst.y = z * rhs.x - x * rhs.z;
dst.z = x * rhs.y - y * rhs.x;
dst.w = 0.f;
return dst;
}
Vector4 Vector4::Cross3(const Vector4 &rhs) const {
return Cross3(rhs.XYZ());
}
}
#pragma endregion

19
tests/CMakeLists.txt Normal file
View File

@@ -0,0 +1,19 @@
include(FetchContent)
FetchContent_Declare(
googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG release-1.11.0
)
FetchContent_MakeAvailable(googletest)
add_library(GTest::GTest INTERFACE IMPORTED)
target_link_libraries(GTest::GTest INTERFACE gtest_main)
file(GLOB_RECURSE TEST_SRC "tests.cpp" "*.cpp")
add_executable(Test ${TEST_SRC})
target_link_libraries(Test PUBLIC J3ML)
#find_package(GTest REQUIRED)
target_link_libraries(Test PRIVATE GTest::GTest)
include_directories("include")
add_test(NAME "J3MLTestSuite" COMMAND Test)

View File

@@ -0,0 +1,3 @@
//
// Created by josh on 12/26/2023.
//

View File

@@ -0,0 +1,3 @@
//
// Created by josh on 12/26/2023.
//

View File

@@ -0,0 +1,3 @@
//
// Created by josh on 12/26/2023.
//

View File

@@ -0,0 +1,183 @@
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector2.h>
using J3ML::LinearAlgebra::Vector2;
TEST(Vector2Test, V2_Constructor_Default)
{
EXPECT_EQ(Vector2(), Vector2::Zero);
}
TEST(Vector2Test, V2_Constructor_XY)
{
Vector2 vec {1, 0};
EXPECT_EQ(vec, Vector2::Right);
}
TEST(Vector2Test, V2_Addition_Op)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {3, 3};
EXPECT_EQ(A+B, C);
}
TEST(Vector2Test, V2_Addition_Method)
{
Vector2 A {2,2};
Vector2 B {2,2};
Vector2 C {4, 4};
EXPECT_EQ(A.Add(B), C);
}
TEST(Vector2Test, V2_Addition_Static)
{
Vector2 A {3, 3};
Vector2 B {2, 2};
Vector2 C {5, 5};
EXPECT_EQ(Vector2::Add(A, B), C);
}
TEST(Vector2Test, V2_Subtract_Op)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {-1, -1};
EXPECT_EQ(A-B, C);
}
TEST(Vector2Test, V2_Subtract_Method)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {-1, -1};
EXPECT_EQ(A.Sub(B), C);
}
TEST(Vector2Test, V2_Subtract_Static)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {-1, -1};
EXPECT_EQ(Vector2::Sub(A, B), C);
}
TEST(Vector2Test, V2_Scalar_Multiplication)
{
Vector2 A {5, 1};
float B = 0.5f;
Vector2 C = {2.5f, .5f};
EXPECT_EQ(A*B, C);
}
TEST(Vector2Test, V2_Size)
{
EXPECT_EQ(sizeof(Vector2), 8);
}
TEST(Vector2Test, V2_NaN)
{
EXPECT_NE(Vector2::Zero, Vector2::NaN);
EXPECT_NE(Vector2::Up, Vector2::NaN);
EXPECT_NE(Vector2::Left, Vector2::NaN);
EXPECT_NE(Vector2::Down, Vector2::NaN);
EXPECT_NE(Vector2::Right, Vector2::NaN);
EXPECT_NE(Vector2::NaN, Vector2::NaN);
}
TEST(Vector2Test, V2_MarginOfError)
{
Vector2 A {2,2};
Vector2 B {1.85, 1.85};
EXPECT_TRUE(A.IsWithinMarginOfError(B, 0.5f));
}
TEST(Vector2Test, V2_Min)
{
Vector2 A {2,2};
Vector2 B {1.85, 1.85};
EXPECT_EQ( Vector2::Min(A, B), B);
}
TEST(Vector2Test, V2_Max)
{
Vector2 A {2,2};
Vector2 B {1.85, 1.85};
EXPECT_EQ( Vector2::Max(A, B), A);
}
TEST(Vector2Test, V2_Clamp)
{
Vector2 Input{0, 20};
Vector2 Minimum { 2, 2};
Vector2 Maximum {16, 16};
Vector2 ExpectedResult {2, 16};
EXPECT_EQ(Input.Clamp(Minimum, Maximum), ExpectedResult);
}
TEST(Vector2Test, V2_DotProduct)
{
// TODO: Equality
Vector2 A {2, 2};
Vector2 B {1, 1};
EXPECT_FLOAT_EQ(A.Dot(B), 1.f);
}
TEST(Vector2Test, V2_Project)
{
Vector2 Base {1, 1};
Vector2 Projected {1, 1};
Vector2 ExpectedResult {0.5, 0.5};
EXPECT_EQ(Base.Project(Projected), ExpectedResult);
}
TEST(Vector2Test, V2_Normalize)
{
Vector2 A{2, 0};
Vector2 B{1, 0};
EXPECT_EQ(A.Normalize(), B);
}
TEST(Vector2Test, V2_Lerp)
{
Vector2 A {2,2};
Vector2 B {10, 10};
Vector2 C {6, 6};
EXPECT_EQ(A.Lerp(B, 0.f), A);
EXPECT_EQ(A.Lerp(B, 1.f), B);
EXPECT_EQ(A.Lerp(B, 0.5f), C);
}
TEST(Vector2Test, V2_AngleBetween)
{
Vector2 A {0.5f, 0.5};
Vector2 B {0.5f, 0.1f};
A = A.Normalize();
B = B.Normalize();
// TODO: AngleBetween returns not a number
EXPECT_FLOAT_EQ(A.AngleBetween(B), 0.58800244);
}

View File

@@ -0,0 +1,198 @@
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector3.h>
using J3ML::LinearAlgebra::Vector3;
void EXPECT_V3_EQ(const Vector3& lhs, const Vector3& rhs)
{
EXPECT_FLOAT_EQ(lhs.x, rhs.x);
EXPECT_FLOAT_EQ(lhs.y, rhs.y);
EXPECT_FLOAT_EQ(lhs.z, rhs.z);
}
TEST(Vector3Test, V3_Constructor_Default)
{
EXPECT_V3_EQ(Vector3(), Vector3::Zero);
}
TEST(Vector3Test, V3_Constructor_XYZ)
{
Vector3 Input {0, 1, 0};
EXPECT_V3_EQ(Input, Vector3::Down);
}
TEST(Vector3Test, V3_Addition_Op) {
Vector3 A {1,1,1};
Vector3 B {2,2,2};
Vector3 ExpectedResult {3,3,3};
EXPECT_V3_EQ(A + B, ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Method) {
Vector3 A {1,1,1};
Vector3 B {2,2,2};
Vector3 ExpectedResult {3,3,3};
EXPECT_V3_EQ(A.Add(B), ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Static) {
Vector3 A {1,1,1};
Vector3 B {3,3,3};
Vector3 ExpectedResult {4,4,4};
EXPECT_V3_EQ(Vector3::Add(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Op) {
Vector3 A {2,2,2};
Vector3 B {.5f, .5f, .5f};
Vector3 ExpectedResult {1.5f, 1.5f, 1.5f};
EXPECT_V3_EQ(A - B, ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Method) {
Vector3 A {3,3,3};
Vector3 B {1,1,1};
Vector3 ExpectedResult {2,2,2};
EXPECT_V3_EQ(A.Sub(B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Static) {
Vector3 A {4,4,4};
Vector3 B {1,1,1};
Vector3 ExpectedResult {3,3,3};
EXPECT_V3_EQ(Vector3::Sub(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Op) {
Vector3 A { 1,1,1};
float B = 1.5f;
Vector3 ExpectedResult {1.5f, 1.5f, 1.5f};
EXPECT_V3_EQ(A * B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Method) {
Vector3 A {3,3,3};
float B = 1.5f;
Vector3 ExpectedResult {4.5f, 4.5f, 4.5f};
EXPECT_V3_EQ(A.Mul(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Static) {
Vector3 A {2,2,2};
float B = 1.5f;
Vector3 ExpectedResult {3.f, 3.f, 3.f};
EXPECT_V3_EQ(Vector3::Mul(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Op) {
Vector3 A {4,4,4};
float B = 2.f;
Vector3 ExpectedResult {2,2,2};
EXPECT_V3_EQ(A / B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Method) {
Vector3 A {6,6,6};
float B = 2.f;
Vector3 ExpectedResult { 3,3,3};
EXPECT_V3_EQ(A.Div(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Static) {
Vector3 A {3,3,3};
float B = 1.5f;
Vector3 ExpectedResult { 2.f, 2.f, 2.f};
EXPECT_V3_EQ(Vector3::Div(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Sizeof) {
EXPECT_EQ(sizeof(Vector3), 12);
}
TEST(Vector3Test, V3_NaN) {
EXPECT_NE(Vector3(0, 0, 0), Vector3::NaN);
}
TEST(Vector3Test, V3_Min) {
Vector3 Input {2,2,2};
Vector3 Minimum {3,3,3};
Vector3 ExpectedResult {2,2,2};
EXPECT_V3_EQ(Input.Min(Minimum), ExpectedResult);
}
TEST(Vector3Test, V3_Max) {
Vector3 Input {2,2,2};
Vector3 Maximum {3,3,3};
Vector3 ExpectedResult {3,3,3};
EXPECT_V3_EQ(Input.Max(Maximum), ExpectedResult);
}
TEST(Vector3Test, V3_Clamp) {
Vector3 Input {5,-1,8};
Vector3 Minimum {1,1,1};
Vector3 Maximum {5,5,5};
Vector3 ExpectedResult {5,1,5};
EXPECT_V3_EQ(Input.Clamp(Minimum, Maximum), ExpectedResult);
}
TEST(Vector3Test, V3_DotProduct) {
Vector3 A{6,6,6};
Vector3 B{1,1,1};
float ExpectedResult = 1;
EXPECT_FLOAT_EQ(A.Dot(B), ExpectedResult);
}
TEST(Vector3Test, V3_CrossProduct) {
Vector3 A{1,1,1};
Vector3 B{2,2,2};
Vector3 ExpectedResult {0,0,0};
EXPECT_V3_EQ(A.Cross(B), ExpectedResult);
}
TEST(Vector3Test, V3_Project) {
Vector3 Base {};
Vector3 Projection {};
Vector3 ExpectedResult {};
}
TEST(Vector3Test, V3_Normalize) {
Vector3 Input {2, 0, 0};
Vector3 ExpectedResult {1, 0, 0};
EXPECT_V3_EQ(Input.Normalize(), ExpectedResult);
}
TEST(Vector3Test, V3_Lerp)
{
Vector3 Start {};
Vector3 Finish {};
float Percent = 50;
Vector3 ExpectedResult {};
EXPECT_V3_EQ(Start.Lerp(Finish, Percent), ExpectedResult);
}
TEST(Vector3Test, V3_AngleBetween) {
using J3ML::LinearAlgebra::Angle2D;
Vector3 A{ .5f, .5f, .5f};
Vector3 B {.25f, .75f, .25f};
A = A.Normalize();
B = B.Normalize();
Angle2D ExpectedResult {-0.69791365, -2.3561945};
std::cout << A.AngleBetween(B).x << ", " << A.AngleBetween(B).y << "";
auto angle = A.AngleBetween(B);
EXPECT_FLOAT_EQ(angle.x, ExpectedResult.x);
EXPECT_FLOAT_EQ(angle.y, ExpectedResult.y);
}

View File

@@ -0,0 +1,106 @@
#include <gtest/gtest.h>
#include <J3ML/LinearAlgebra/Vector4.h>
using Vector4 = J3ML::LinearAlgebra::Vector4;
void EXPECT_V4_EQ(const Vector4& lhs, const Vector4& rhs)
{
}
TEST(Vector4Test, V4_Constructor_Default)
{
EXPECT_V4_EQ(Vector4(), Vector4::Zero);
}
TEST(Vector4Test, V4_Constructor_XYZW)
{
Vector4 Input {0, 1, 0, 1};
EXPECT_FLOAT_EQ(Input.x, 0);
EXPECT_FLOAT_EQ(Input.y, 1);
EXPECT_FLOAT_EQ(Input.z, 0);
EXPECT_FLOAT_EQ(Input.w, 1);
}
TEST(Vector4Test, V4_Addition_Op) {
Vector4 A {1, 1, 1, 1};
Vector4 B {2, 2, 2, 2};
Vector4 ExpectedResult {3, 3, 3, 3};
EXPECT_V4_EQ(A + B, ExpectedResult);
}
TEST(Vector4Test, V4_Addition_Method)
{
}
TEST(Vector4Test, V4_Addition_Static)
{
}
TEST(Vector4Test, V4_Subtract_Op)
{
}
TEST(Vector4Test, V4_Subtract_Method)
{
}
TEST(Vector4Test, V4_Subtract_Static)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Op)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Method)
{
}
TEST(Vector4Test, V4_Scalar_Mult_Static)
{
}
TEST(Vector4Test, V4_Scalar_Div_Op)
{
}
TEST(Vector4Test, V4_Scalar_Div_Method)
{
}
TEST(Vector4Test, V4_Scalar_Div_Static)
{
}
TEST(Vector4Test, V4_Sizeof)
{
}
TEST(Vector4Test, V4_NaN)
{
}
TEST(Vector4Tests, V4_Min) {}
TEST(Vector4Tests, V4_Max) {}
TEST(Vector4Tests, V4_Clamp) {}
TEST(Vector4Tests, V4_DotProduct) {}
TEST(Vector4Tests, V4_CrossProduct) {}
TEST(Vector4Tests, V4_Project) {}
TEST(Vector4Test, V4_Normalize) {}

16
tests/tests.cpp Normal file
View File

@@ -0,0 +1,16 @@
#include <gtest/gtest.h>
GTEST_API_ int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#ifdef __WIN32
extern "C" {
int wmain(int argc, wchar_t* argv[])
{
return main(argc, reinterpret_cast<char **>(argv));
}
};
#endif