Compare commits

...

20 Commits

Author SHA1 Message Date
de108630b6 Unfinished Work 2024-03-23 16:20:57 -04:00
f6abe5c430 Implement Vector4::Equals 2024-03-21 20:43:16 -04:00
4085a1700c Implement Vector3::Equals 2024-03-21 20:43:07 -04:00
06bb959e3f Implement Matrix3x3::IsRowOrthogonal IsColOrthogonal 2024-03-21 18:37:43 -04:00
802c321115 Implement Missing things (More To Come) (Broken build) 2024-03-21 15:24:50 -04:00
d1529f05b0 Implement AABB::GetRandomPoint methods 2024-03-21 14:00:31 -04:00
dc41dcf520 Implement Vector3::MinElement 2024-03-20 15:36:27 -04:00
f4c6337f12 Implement AABB::Intersects(Triangle) SAT algorithm 2024-03-20 00:24:16 -04:00
212c1d3bc4 Implement AABB::Intersects(Triangle) 2024-03-19 18:42:41 -04:00
d60c71373b Implement Vector3 += -= *= /= 2024-03-19 14:26:26 -04:00
4cb497be29 Template Forward Declaration Fix 2024-03-19 14:20:32 -04:00
cd58676ece Implement more OBB methods 2024-03-19 14:20:12 -04:00
9f60f296c6 Massive Refactor 2024-03-15 15:31:14 -04:00
e8ed68f3c7 Implement(ing) Ray class 2024-03-07 00:40:12 -05:00
44b8bb8172 Migrate AABB2D implementation to it's cpp file 2024-03-05 01:05:25 -05:00
4aaf430f68 Implement Several Methods 2024-02-29 02:17:06 -05:00
232bfebbef Implement Matrix4x4::Matrix4x4 from float pointer 2024-02-27 02:56:09 -05:00
c50719de36 Implement Matrix4x4::Scale 2024-02-27 01:56:54 -05:00
405800dbc5 Large Restructure and Organization x2 2024-02-27 00:42:37 -05:00
718f63a3c8 Large Restructure and Organization 2024-02-27 00:42:24 -05:00
55 changed files with 2395 additions and 372 deletions

View File

@@ -29,39 +29,8 @@ file(GLOB_RECURSE J3ML_SRC "src/J3ML/*.c" "src/J3ML/*.cpp")
include_directories("include")
add_library(J3ML SHARED ${J3ML_SRC}
src/J3ML/LinearAlgebra/AxisAngle.cpp
include/J3ML/LinearAlgebra/Vector.h
include/J3ML/Geometry/Plane.h
include/J3ML/Geometry/AABB.h
include/J3ML/Geometry/Frustum.h
include/J3ML/Geometry/OBB.h
include/J3ML/Geometry/Capsule.h
include/J3ML/Geometry/Sphere.h
include/J3ML/Geometry/Ray.h
include/J3ML/Geometry/QuadTree.h
include/J3ML/Geometry/LineSegment.h
include/J3ML/Geometry/TriangleMesh.h
include/J3ML/Geometry/Polygon.h
include/J3ML/Geometry/Triangle.h
include/J3ML/Geometry/Triangle2D.h
src/J3ML/Geometry/AABB.cpp
src/J3ML/Geometry/Plane.cpp
src/J3ML/Geometry/Sphere.cpp
src/J3ML/Geometry/Frustum.cpp
src/J3ML/Geometry/OBB.cpp
src/J3ML/Geometry/Ray.cpp
src/J3ML/Geometry/Capsule.cpp
src/J3ML/Geometry/TriangleMesh.cpp
src/J3ML/Geometry/QuadTree.cpp
src/J3ML/Geometry/LineSegment.cpp
include/J3ML/Geometry/AABB2D.h
src/J3ML/Geometry/Polygon.cpp
include/J3ML/Geometry/Polyhedron.h
src/J3ML/Geometry/Polyhedron.cpp
include/J3ML/Algorithm/RNG.h
src/J3ML/Algorithm/RNG.cpp
include/J3ML/Algorithm/Spring.h
include/J3ML/Algorithm/DifferentialSolvers.h)
include/J3ML/Geometry/Common.h
src/J3ML/Geometry/Triangle.cpp)
set_target_properties(J3ML PROPERTIES LINKER_LANGUAGE CXX)
install(TARGETS ${PROJECT_NAME} DESTINATION lib/${PROJECT_NAME})

View File

@@ -15,6 +15,12 @@ namespace J3ML::Algorithm
return (x + y + x*y);
}
// Accelleration = Velocity / Time
// Velocity = Position / Time
// Position = Vector3
//
float euler(float x0, float y, float h, float x)
{
float temp = -0.f;

View File

@@ -1,32 +1,22 @@
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra.h>
#pragma once
namespace J3ML::Geometry {
using Vector2 = J3ML::LinearAlgebra::Vector2;
using Vector3 = J3ML::LinearAlgebra::Vector3;
#include <J3ML/Geometry/AABB2D.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/QuadTree.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/Shape.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Triangle2D.h>
#include <J3ML/Geometry/TriangleMesh.h>
class LineSegment2D
{
Vector2 A;
Vector2 B;
};
class Rectangle;
class AABB;
class OBB;
class Capsule;
class Frustum;
class OBB2D;
class Line2D;
class Ray2D;
class Triangle2D;
class Polygon2D;
struct IntersectionResult2D {};
bool Intersects2D(LineSegment2D seg, Rectangle rect);
IntersectionResult2D GetIntersection2D(LineSegment2D seg, Rectangle rect);
}
using namespace J3ML::Geometry;

View File

@@ -1,30 +1,17 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Polyhedron.h>
// TODO: Fix circular include between AABB and OBB
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Shape.h>
#include "J3ML/Algorithm/RNG.h"
namespace J3ML::Geometry
{
using namespace LinearAlgebra;
using namespace J3ML::LinearAlgebra;
using J3ML::Algorithm::RNG;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
@@ -34,11 +21,15 @@ namespace J3ML::Geometry
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB {
class AABB : public Shape {
public:
Vector3 minPoint;
Vector3 maxPoint;
AABB();
AABB(const Vector3& min, const Vector3& max);
static int NumFaces() { return 6; }
static int NumEdges() { return 12; }
@@ -102,23 +93,23 @@ namespace J3ML::Geometry
static AABB MinimalEnclosingAABB(const Vector3 *pointArray, int numPoints);
float GetVolume() const;
float GetSurfaceArea() const;
Vector3 GetRandomPointInside();
Vector3 GetRandomPointOnSurface();
Vector3 GetRandomPointOnEdge();
Vector3 GetRandomCornerPoint();
Vector3 GetClosestPoint(const Vector3& point) const;
void Translate(const Vector3& offset);
AABB Translated(const Vector3& offset) const;
AABB TransformAABB(const Matrix3x3& transform);
AABB TransformAABB(const Matrix4x4& transform);
AABB TransformAABB(const Quaternion& transform);
OBB Transform(const Matrix3x3& transform);
OBB Transform(const Matrix4x4& transform);
OBB Transform(const Quaternion& transform);
OBB Transform(const Matrix3x3& transform) const;
OBB Transform(const Matrix4x4& transform) const;
OBB Transform(const Quaternion& transform) const;
bool Contains(const Vector3& point) const;
bool Contains(const Vector3& aabbMinPoint, const Vector3& aabbMaxPoint) const;
bool Contains(const LineSegment& lineSegment) const;
bool Contains(const AABB& aabb) const;
bool Contains(const OBB& obb) const;
bool Contains(const Sphere& sphere) const;
bool Contains(const Triangle& triange) const;
bool Contains(const Triangle& triangle) const;
bool Contains(const Polygon& polygon) const;
bool Contains(const Frustum& frustum) const;
bool Contains(const Polyhedron& polyhedron) const;
@@ -143,7 +134,10 @@ namespace J3ML::Geometry
void SetFrom(const Sphere &s);
Vector3 GetRandomPointInside() const;
Vector3 GetRandomPointInside(RNG& rng) const;
Vector3 GetRandomPointOnSurface(RNG& rng) const;
Vector3 GetRandomPointOnEdge(RNG& rng) const;
Vector3 GetRandomCornerPoint(RNG& rng) const;
void SetNegativeInfinity();
@@ -154,5 +148,9 @@ namespace J3ML::Geometry
void Enclose(const LineSegment &lineSegment);
void Enclose(const OBB &obb);
bool TestAxis(const Vector3& axis, const Vector3& v0, const Vector3& v1, const Vector3& v2) const;
};
}

View File

@@ -1,12 +1,13 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
#include "Shape.h"
namespace J3ML::Geometry
{
using LinearAlgebra::Vector2;
// CaveGame AABB
class AABB2D
class AABB2D : public Shape2D
{
public:
@@ -17,90 +18,37 @@ namespace J3ML::Geometry
minPoint(min), maxPoint(max)
{}
float Width() const { return maxPoint.x - minPoint.x; }
float Height() const { return maxPoint.y - minPoint.y; }
float Width() const;
float Height() const;
float DistanceSq(const Vector2& pt) const
{
Vector2 cp = pt.Clamp(minPoint, maxPoint);
return cp.DistanceSq(pt);
}
float DistanceSq(const Vector2& pt) const;
void SetNegativeInfinity();
void Enclose(const Vector2& point)
{
minPoint = Vector2::Min(minPoint, point);
maxPoint = Vector2::Max(maxPoint, point);
}
void Enclose(const Vector2& point);
bool Intersects(const AABB2D& rhs) const
{
return maxPoint.x >= rhs.minPoint.x &&
maxPoint.y >= rhs.minPoint.y &&
rhs.maxPoint.x >= minPoint.x &&
rhs.maxPoint.y >= minPoint.y;
}
bool Intersects(const AABB2D& rhs) const;
bool Contains(const AABB2D& rhs) const
{
return rhs.minPoint.x >= minPoint.x && rhs.minPoint.y >= minPoint.y
&& rhs.maxPoint.x <= maxPoint.x && rhs.maxPoint.y <= maxPoint.y;
}
bool Contains(const AABB2D& rhs) const;
bool Contains(const Vector2& pt) const
{
return pt.x >= minPoint.x && pt.y >= minPoint.y
&& pt.x <= maxPoint.x && pt.y <= maxPoint.y;
}
bool Contains(const Vector2& pt) const;
bool Contains(int x, int y) const
{
return x >= minPoint.x && y >= minPoint.y
&& x <= maxPoint.x && y <= maxPoint.y;
}
bool Contains(int x, int y) const;
bool IsDegenerate() const
{
return minPoint.x >= maxPoint.x || minPoint.y >= maxPoint.y;
}
bool IsDegenerate() const;
bool HasNegativeVolume() const
{
return maxPoint.x < minPoint.x || maxPoint.y < minPoint.y;
}
bool HasNegativeVolume() const;
bool IsFinite() const
{
return minPoint.IsFinite() && maxPoint.IsFinite() && minPoint.MinElement() > -1e5f && maxPoint.MaxElement() < 1e5f;
}
bool IsFinite() const;
Vector2 PosInside(const Vector2 &normalizedPos) const
{
return minPoint + normalizedPos.Mul(maxPoint - minPoint);
}
Vector2 PosInside(const Vector2 &normalizedPos) const;
Vector2 ToNormalizedLocalSpace(const Vector2 &pt) const
{
return (pt - minPoint).Div(maxPoint - minPoint);
}
Vector2 ToNormalizedLocalSpace(const Vector2 &pt) const;
AABB2D operator+(const Vector2& pt) const
{
AABB2D a;
a.minPoint = minPoint + pt;
a.maxPoint = maxPoint + pt;
return a;
}
AABB2D operator+(const Vector2& pt) const;
AABB2D operator-(const Vector2& pt) const
{
AABB2D a;
a.minPoint = minPoint - pt;
a.maxPoint = maxPoint - pt;
return a;
}
AABB2D operator-(const Vector2& pt) const;
};
}

View File

@@ -1,13 +1,16 @@
#pragma once
#include "LineSegment.h"
#include "Shape.h"
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/Geometry/Common.h>
namespace J3ML::Geometry
{
using namespace LinearAlgebra;
class Capsule
class Capsule : public Shape
{
public:
// Specifies the two inner points of this capsule
LineSegment l;
// Specifies the radius of this capsule
@@ -23,5 +26,6 @@ namespace J3ML::Geometry
Vector3 Center() const;
Vector3 Centroid() const;
Vector3 ExtremePoint(const Vector3& direction);
AABB MinimalEnclosingAABB() const;
};
}

View File

@@ -0,0 +1,30 @@
#pragma once
// Forward declarations for classes that include each other
namespace J3ML::Geometry
{
class Shape;
class AABB2D;
class AABB;
class Capsule;
class Frustum;
class LineSegment;
class OBB;
class Plane;
class Polygon;
class Polyhedron;
template<typename T> class QuadTree;
class Ray;
class Shape;
class Sphere;
class Triangle;
class Triangle2D;
class TriangleMesh;
}
// Methods required by Geometry types
namespace J3ML::Geometry
{
}

View File

@@ -3,8 +3,10 @@
//
#pragma once
#include <J3ML/Geometry/Common.h>
#include "Plane.h"
#include <J3ML/LinearAlgebra/CoordinateFrame.h>
#include "Shape.h"
#include <J3ML/LinearAlgebra.h>
namespace J3ML::Geometry
{
@@ -27,7 +29,7 @@ namespace J3ML::Geometry
Perspective
};
class Frustum {
class Frustum : public Shape {
public:
Plane TopFace;
Plane BottomFace;
@@ -36,6 +38,7 @@ namespace J3ML::Geometry
Plane FarFace;
Plane NearFace;
static Frustum CreateFrustumFromCamera(const CoordinateFrame& cam, float aspect, float fovY, float zNear, float zFar);
AABB MinimalEnclosingAABB() const;
};

View File

@@ -1,31 +1,43 @@
#pragma once
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polyhedron.h>
namespace J3ML::Geometry {
class OBB
/// A 3D arbitrarily oriented bounding box
// This data structure represents a box in 3D space. The local axes of this box can be arbitrarily oriented/rotated
// with respect to the global world coordinate system. This allows OBBs to more tightly bound objects than AABBs do,
// which always align with the world space axes. This flexibility has the drawback that the geometry tests and operations
// involving OBBs are more costly, and representing an OBB in memory takes more space (15 floats vs 6 floats)
class OBB : public Shape
{
public:
// The center position of this OBB
Vector3 pos;
// Stores half-sizes to x, y, and z directions in the local space of this OBB.
Vector3 r;
// Specifies normalized direc tion vectors for the local axes
// Specifies normalized direction vectors for the local axes
Vector3 axis[3];
/// Default constructor that does not initialize any member values.
OBB() {}
// Constructs an OBB by explicitly initializing all member values
OBB(const Vector3& pos, const Vector3& radii, const Vector3& axis0, const Vector3& axis1, const Vector3& axis2);
OBB(const Geometry::AABB& aabb);
OBB(const AABB& aabb);
inline static int NumFaces() { return 6; }
inline static int NumEdges() { return 12; }
inline static int NumVertices() { return 8; }
Polyhedron ToPolyhedron() const;
Geometry::AABB MinimalEnclosingAABB() const;
//PBVolume<6> ToPBVolume() const;
AABB MinimalEnclosingAABB() const
{
AABB aabb;
aabb.SetFrom(*this);
return aabb;
}
Sphere MinimalEnclosingSphere() const;
Sphere MaximalContainedSphere() const;
@@ -33,6 +45,9 @@ namespace J3ML::Geometry {
Vector3 HalfSize() const;
Vector3 Diagonal() const;
Vector3 HalfDiagonal() const;
void Transform(const Matrix3x3& transform);
void Transform(const Matrix4x4& transform);
void Transform(const Quaternion& transform);
bool IsFinite() const;
bool IsDegenerate() const;
Vector3 CenterPoint() const;
@@ -40,9 +55,44 @@ namespace J3ML::Geometry {
Vector3 AnyPointFast() const;
float Volume();
float SurfaceArea();
float Volume() const;
float SurfaceArea() const;
Geometry::LineSegment Edge(int edgeIndex) const;
Vector3 CornerPoint(int cornerIndex) const;
Vector3 PointInside(float x, float y, float z) const;
Vector3 PointInside(const Vector3& pt) const;
void ProjectToAxis(const Vector3 &direction, float &outMin, float &outMax) const;
int UniqueFaceNormals(Vector3 *out) const;
int UniqueEdgeDirections(Vector3 *out) const;
Vector3 PointOnEdge(int edgeIndex, float u) const;
Vector3 FaceCenterPoint(int faceIndex) const;
void GetCornerPoints(Vector3 *outPointArray) const;
void GetFacePlanes(Plane *outPlaneArray) const;
Plane FacePlane(int faceIndex) const;
void ExtremePointsAlongDirection(const Vector3 &dir, const Vector3 *pointArray, int numPoints, int &idxSmallest,
int &idxLargest, float &smallestD, float &largestD);
Vector3 FacePoint(int faceIndex, float u, float v) const;
Vector3 ExtremePoint(const Vector3 &direction, float &projectionDistance) const;
Vector3 ExtremePoint(const Vector3 &direction) const;
void SetFrom(const AABB &aabb, const Matrix3x3 &transform);
void SetFrom(const AABB &aabb, const Matrix4x4 &transform);
void SetFrom(const AABB &aabb, const Quaternion &transform);
};
}

View File

@@ -1,18 +1,20 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include "Shape.h"
namespace J3ML::Geometry
{
using J3ML::LinearAlgebra::Vector3;
class Plane
class Plane : public Shape
{
public:
Plane() : Shape() {}
Plane(const Vector3& pos, const Vector3& norm)
: Shape(), Position(pos), Normal(norm) {}
Vector3 Position;
Vector3 Normal;
float distance = 0.f;
};
}

View File

@@ -1,7 +1,28 @@
#pragma once
namespace J3ML::Geometry {
class Polygon {
#include <J3ML/Geometry/Common.h>
#include <vector>
#include "Shape.h"
#include "J3ML/LinearAlgebra.h"
namespace J3ML::Geometry {
class Polygon : public Shape
{
public:
std::vector<Vector3> vertices;
AABB MinimalEnclosingAABB() const;
int NumVertices() const
{
return (int)vertices.size();
}
Vector3 Vertex(int vertexIndex) const
{
assert(vertexIndex >= 0);
assert(vertexIndex < (int) vertices.size());
return vertices[vertexIndex];
}
protected:
private:
};
}

View File

@@ -1,8 +1,46 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <J3ML/Geometry/Shape.h>
#include <vector>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::Geometry
{
class Polyhedron {
using namespace J3ML::LinearAlgebra;
// Represents a three-dimensional closed geometric solid defined by flat polygonal faces.
class Polyhedron : public Shape
{
public:
// Stores a list of indices of a single face of a Polygon
struct Face
{
// Specifies the indices of the corner vertices of the polyhedron.
// Indices point to the polyhedron vertex array.
// The face vertices should all lie on the same plane.
// The positive direction of the plane (the direction the face outwards normal points)
// is the one where the vertices are wound in counter-clockwise order.
std::vector<int> v;
// Reverses the winding order of this face. This has the effect of reversing the direction
// the normal of this face points to.
void FlipWindingOrder();
};
// Specifies the vertices of this polyhedron.
std::vector<Vector3> v;
std::vector<Face> f;
int NumVertices() const {return (int)v.size();}
int NumFaces() const { return (int)f.size();}
AABB MinimalEnclosingAABB() const;
Vector3 Vertex(int vertexIndex) const;
protected:
private:
};
}

View File

@@ -5,13 +5,56 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <vector>
#include "TriangleMesh.h"
#include "Frustum.h"
#include "OBB.h"
namespace J3ML::Geometry
{
using LinearAlgebra::Vector3;
using J3ML::LinearAlgebra::Vector3;
// RaycastResult structure containing the first object the ray collides with,
// the surface intersection point,
// and the surface normal at the point of intersection.
struct RaycastResult
{
Vector3 Intersection;
Vector3 SurfaceNormal;
bool Hit;
Shape* Target;
static RaycastResult NoHit() { return {Vector3::NaN, Vector3::NaN, false, nullptr};}
};
// A ray in 3D space is a line that starts from an origin point and extends to infinity in one direction
class Ray
{
public:
// The position of this ray.
Vector3 Origin;
// The normalized direction vector of this ray.
// @note: For proper functionality, this direction vector needs to always be normalized
Vector3 Direction;
Ray() {}
Ray(const Vector3& pos, const Vector3& dir);
//explicit Ray(const Line& line);
explicit Ray(const LineSegment& lineSegment);
bool IsFinite() const;
Vector3 GetPoint(float distance) const;
RaycastResult Cast(const Triangle& target, float maxDistance = 99999999);
RaycastResult Cast(const Plane& target, float maxDistance = 99999999);
RaycastResult Cast(const AABB& target, float maxDistance = 99999999);
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter3/raycast_sphere.html
RaycastResult Cast(const Sphere& target, float maxDistance = 99999999);
RaycastResult Cast(const OBB& target, float maxDistance = 99999999);
RaycastResult Cast(const Capsule& target, float maxDistance = 99999999);
RaycastResult Cast(const Frustum& target, float maxDistance = 99999999);
RaycastResult Cast(const TriangleMesh& target, float maxDistance = 9999999);
// Returns a RaycastResult structure containing the first object the ray collides with,
// the surface intersection point,
// and the surface normal at the point of intersection.
RaycastResult Cast(std::vector<Shape> shapes, float maxDistance = 99999999);
};
}

View File

@@ -0,0 +1,26 @@
#pragma once
namespace J3ML::Geometry
{
class GeometricPrimitive
{
public:
protected:
private:
};
class Shape
{
public:
protected:
private:
};
class Shape2D
{
public:
protected:
private:
};
}

View File

@@ -1,15 +1,71 @@
#pragma once
#include "J3ML/Geometry.h"
#include <J3ML/Geometry.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Shape.h>
namespace J3ML::Geometry
{
class Sphere
using J3ML::LinearAlgebra::Matrix3x3;
using J3ML::LinearAlgebra::Matrix4x4;
// A mathematical representation of a 3-dimensional sphere
class Sphere : public Shape
{
public:
Sphere(const Vector3& pos, float radius)
Vector3 Position;
float Radius;
Sphere() {}
Sphere(const Vector3& pos, float radius) : Position(pos), Radius(radius) {}
void Translate(const Vector3& offset)
{
Position = Position + offset;
}
void Transform(const Matrix3x3& transform)
{
Position = transform * Position;
}
void Transform(const Matrix4x4& transform)
{
Position = transform * Position;
}
inline float Cube(float inp) const
{
return inp*inp*inp;
}
float Volume() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
float SurfaceArea() const
{
return 4.f * M_PI * Cube(Radius) / 3.f;
}
bool IsFinite() const
{
return Position.IsFinite() && std::isfinite(Radius);
}
bool IsDegenerate()
{
return !(Radius > 0.f) || !Position.IsFinite();
}
bool Contains(const Vector3& point) const
{
return Position.DistanceSquared(point) <= Radius*Radius;
}
bool Contains(const Vector3& point, float epsilon) const
{
return Position.DistanceSquared(point) <= Radius*Radius + epsilon;
}
bool Contains(const LineSegment& lineseg) const
{
}
TriangleMesh GenerateUVSphere() const {}
TriangleMesh GenerateIcososphere() const {}
};
}

View File

@@ -1,9 +1,20 @@
#pragma once
#include <J3ML/Geometry/Common.h>
#include <J3ML/LinearAlgebra.h>
namespace J3ML::Geometry
{
class Triangle
{
public:
Vector3 V0;
Vector3 V1;
Vector3 V2;
bool Intersects(const AABB& aabb) const;
AABB BoundingAABB() const;
};
}

View File

@@ -3,7 +3,6 @@
namespace J3ML::Geometry
{
class Shape2D {};
class Triangle2D {
public:
};

View File

@@ -1,17 +1,242 @@
#pragma once
//
// Created by josh on 12/25/2023.
//
#include <cstdint>
#include <cmath>
#include <stdfloat>
#include <string>
#include <cassert>
namespace J3ML
namespace J3ML::SizedIntegralTypes
{
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
using s8 = int8_t;
using s16 = int16_t;
using s32 = int32_t;
using s64 = int64_t;
using s128 = __int128_t;
}
namespace J3ML::SizedFloatTypes
{
using f32 = float;
using f64 = double;
using f128 = long double;
}
using namespace J3ML::SizedIntegralTypes;
using namespace J3ML::SizedFloatTypes;
namespace J3ML::Math
{
bool EqualAbs(float a, float b, float epsilon = 1e-3f);
// Coming soon: Units Namespace
// For Dimensional Analysis
/*
namespace Units
{
struct Unit {};
struct Meters : public Unit { };
struct ImperialInches : public Unit {};
struct Time : public Unit {};
struct Grams : public Unit {};
struct MetersPerSecond : public Unit {};
template <typename TUnit>
struct Quantity
{
public:
float Value;
};
struct Mass : public Quantity<Grams> {};
struct Length : public Quantity<Meters> { };
struct Velocity : public Quantity<MetersPerSecond>{ };
class MetrixPrefix
{
public:
std::string Prefix;
std::string Symbol;
int Power;
float InverseMultiply(float input) const
{
return std::pow(input, -Power);
}
float Multiply(float input) const
{
return std::pow(input, Power);
}
};
namespace Prefixes
{
static constexpr MetrixPrefix Tera {"tera", "T", 12};
static constexpr MetrixPrefix Giga {"giga", "G", 9};
static constexpr MetrixPrefix Mega {"mega", "M", 6};
static constexpr MetrixPrefix Kilo {"kilo", "k", 3};
static constexpr MetrixPrefix Hecto {"hecto", "h", 2};
static constexpr MetrixPrefix Deca {"deca", "da", 1};
static constexpr MetrixPrefix None {"", "", 0};
static constexpr MetrixPrefix Deci {"", "", 0};
static constexpr MetrixPrefix Centi {"", "", 0};
static constexpr MetrixPrefix Milli {"", "", 0};
static constexpr MetrixPrefix Micro {"", "", 0};
static constexpr MetrixPrefix Nano {"", "", 0};
static constexpr MetrixPrefix Pico {"", "", 0};
}
Length operator ""_meters(long double value)
{
return {(float)value};
}
Length operator ""_m(long double value)
{
return {(float)value};
}
constexpr Length operator ""_kilometers(long double value)
{
return Length {(float)value};
}
Length operator ""_km(long double value)
{
return {(float)value};
}
Length operator ""_centimeters(long double value)
{
return {(float)value};
}
Length operator ""_cm(long double value)
{
return {(float)value};
}
Length operator ""_millimeters(long double value)
{
return {(float)value};
}
Length operator ""_mm(long double value)
{
return {(float)value};
}
Velocity operator ""_mps(long double value)
{
return {(float)value};
}
Velocity operator ""_meters_per_second(long double value)
{
return {(float)value};
}
Velocity operator ""_kmps(long double value)
{
return {(float)value};
}
}*/
#pragma region Constants
static const float Pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679f;
static const float RecipSqrt2Pi = 0.3989422804014326779399460599343818684758586311649346576659258296706579258993018385012523339073069364f;
static const float GoldenRatio = 1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375f;
#pragma endregion
#pragma region Math Functions
inline float Radians(float degrees);
inline float Degrees(float radians);
struct NumberRange
{
float LowerBound;
float UpperBound;
};
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);
/// Linearly interpolates from a to b, under the modulus mod.
/// This function takes evaluates a and b in the range [0, mod] and takes the shorter path to reach from a to b.
inline float LerpMod(float a, float b, float mod, float t);
/// Computes the lerp factor a and b have to be Lerp()ed to get x.
inline float InverseLerp(float a, float b, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509665(v=VS.85).aspx
inline float Step(float y, float x);
/// See http://msdn.microsoft.com/en-us/library/bb509658(v=vs.85).aspx
inline float Ramp(float min, float max, float x);
inline float PingPongMod(float x, float mod);
inline float Sqrt(float x);
inline float FastSqrt(float x);
/// Returns 1/Sqrt(x). (The reciprocal of the square root of x)
inline float RSqrt(float x);
inline float FastRSqrt(float x);
#pragma endregion
namespace BitTwiddling
{
/// Parses a string of form "011101010" to a u32
u32 BinaryStringToValue(const char* s);
/// Returns the number of 1's set in the given value.
inline int CountBitsSet(u32 value);
}
namespace Interp
{
inline float SmoothStart(float t);
}
struct Rotation
{
public:
Rotation();
Rotation(float value);
float valueInRadians;
float ValueInRadians() const;
float ValueInDegrees() const;
Rotation operator+(const Rotation& rhs);
};
Rotation operator ""_rad(long double rads);
Rotation operator ""_radians(long double rads);
Rotation operator ""_deg(long double rads);
Rotation operator ""_degrees(long double rads);
}

View File

@@ -1,76 +1,30 @@
//// Dawsh Linear Algebra Library - Everything you need for 3D math
/// @file LinearAlgebra.h
/// @description Includes all LinearAlgebra classes and functions
/// @author Josh O'Leary, William Tomasine II
/// @copyright 2024 Redacted Software
/// @license Unlicense - Public Domain
/// @revision 1.3
/// @edited 2024-02-26
#pragma once
#include <cstdint>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <functional>
namespace J3ML::Math
{
const float Pi = M_PI;
inline float Radians(float degrees) { return degrees * (Pi/180.f); }
inline float Degrees(float radians) { return radians * (180.f/Pi); }
struct NumberRange
{
float LowerBound;
float UpperBound;
};
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);
}
// Dawsh Linear Algebra Library - Everything you need for 3D math
namespace J3ML::LinearAlgebra {
class Vector2; // A type representing a position in a 2-dimensional coordinate space.
class Vector3; // A type representing a position in a 3-dimensional coordinate space.
class Vector4; // A type representing a position in a 4-dimensional coordinate space.
class Angle2D; // Uses x,y components to represent a 2D rotation.
class EulerAngle; // Uses pitch,yaw,roll components to represent a 3D orientation.
class AxisAngle; //
class CoordinateFrame; //
class Matrix2x2;
class Matrix3x3;
class Matrix4x4;
class Transform2D;
class Transform3D;
class Quaternion;
using Position = Vector3;
}
// TODO: Enforce Style Consistency (Function Names use MicroSoft Case)
// Note: Josh Linear Algebra Types are designed as Immutable Data Types
// x, y, z, w, etc. values should not and can not be set directly.
// rather, you just construct a new type and assign it.
// This might sound ass-backwards for many object types.
// But mathematically, a vector or matrix is defined by it's size, and values.
// Changing the value of one axis fundamentally changes the definition of the vector/matrix.
// So we enforce this conceptually at code level...
// If you're wondering how it remains performant, it only heap-allocates a tiny space (4*n bytes for vectors) (4*n*m bytes for matrices)
// Just Trust Me Bro - Josjh
#define MUTABLE true // Toggle This For: Ugly math, ugly code, and an ugly genital infection!
#if MUTABLE
#define IMMUTABLE !MUTABLE
#endif
namespace LinearAlgebra
{
// TODO: Implement Templated Linear Algebra
// Library Code //
#include "J3ML/LinearAlgebra/Vector2.h"
#include "J3ML/LinearAlgebra/Vector3.h"
#include "J3ML/LinearAlgebra/Vector4.h"
#include "J3ML/LinearAlgebra/Quaternion.h"
#include "J3ML/LinearAlgebra/AxisAngle.h"
#include "J3ML/LinearAlgebra/EulerAngle.h"
#include "J3ML/LinearAlgebra/Matrix2x2.h"
#include "J3ML/LinearAlgebra/Matrix3x3.h"
#include "J3ML/LinearAlgebra/Matrix4x4.h"
#include "J3ML/LinearAlgebra/Transform2D.h"
#include "J3ML/LinearAlgebra/CoordinateFrame.h"
}
using namespace J3ML::LinearAlgebra;

View File

@@ -1,14 +1,22 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
namespace J3ML::LinearAlgebra {
class Angle2D {
public:
float x;
float y;
Angle2D(Math::Rotation rads);
Angle2D(float X, float Y)
{
x = X;
y = Y;
}
bool operator==(const Angle2D& rhs) const {
return (this->x==rhs.x && this->y==rhs.y);
}
};
}

View File

@@ -1,6 +1,8 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/EulerAngle.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra

View File

@@ -0,0 +1,28 @@
#pragma once
// Forward Declarations for classes that include each other
namespace J3ML::LinearAlgebra
{
class Vector2; // A type representing a position in a 2-dimensional coordinate space.
class Vector3; // A type representing a position in a 3-dimensional coordinate space.
class Vector4; // A type representing a position in a 4-dimensional coordinate space.
class Angle2D; // Uses x,y components to represent a 2D rotation.
class EulerAngle; // Uses pitch,yaw,roll components to represent a 3D orientation.
class AxisAngle; //
class CoordinateFrame; //
class Matrix2x2;
class Matrix3x3;
class Matrix4x4;
class Transform2D;
class Transform3D;
class Quaternion;
using Position = Vector3;
}
// Methods required by LinearAlgebra types
namespace J3ML::LinearAlgebra
{
}

View File

@@ -1,6 +1,6 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra

View File

@@ -1,9 +1,13 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
namespace J3ML::LinearAlgebra {
class AxisAngle;
// Essential Reading:
// http://www.essentialmath.com/GDC2012/GDC2012_JMV_Rotations.pdf
class EulerAngle {

View File

@@ -0,0 +1,66 @@
#pragma once
#include <cstddef>
#include <cstdlib>
#include <algorithm>
#include "Vector.h"
namespace J3ML::LinearAlgebra
{
template <uint ROWS, uint COLS, typename T>
class Matrix
{
static constexpr uint Diag = std::min(ROWS, COLS);
using RowVector = Vector<ROWS, T>;
using ColVector = Vector<COLS, T>;
using DiagVector = Vector<Diag, T>;
enum { Rows = ROWS };
enum { Cols = COLS };
void AssertRowSize(uint rows)
{
assert(rows < Rows && "");
}
void AssertColumnSize(uint cols)
{
assert(cols < Cols && "");
}
RowVector GetRow(uint index) const;
ColVector GetColumn(uint index) const;
void SetRow(uint index, RowVector);
void SetColumn(uint index, ColVector);
RowVector &Row(uint index) const;
ColVector &Column(uint index) const;
const T At(uint row, uint col) const
{
AssertRowSize(row);
AssertColumnSize(col);
return elems[row][col];
}
T &At(uint row, uint col)
{
AssertRowSize(row);
AssertColumnSize(col);
return elems[row][col];
}
float* ptr();
const float* ptr() const;
float operator[](uint index) const;
float& operator[](uint index);
private:
T elems[ROWS][COLS];
};
}

View File

@@ -1,6 +1,6 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector2.h>
namespace J3ML::LinearAlgebra {
@@ -16,9 +16,17 @@ namespace J3ML::LinearAlgebra {
Matrix2x2(float val);
Matrix2x2(float m00, float m01, float m10, float m11);
Matrix2x2(const Vector2& r1, const Vector2& r2);
explicit Matrix2x2(const float *data);
Vector2 GetRow(int index) const;
Vector2 GetColumn(int index) const;
void SetRow(int i, const Vector2& row);
void SetColumn(int i, const Vector2& col);
void SetAt(int x, int y, float value);
float At(int x, int y) const;
float &At(int x, int y);
float Determinant() const;
Matrix2x2 Inverse() const;

View File

@@ -1,11 +1,15 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Common.h>
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
class Quaternion;
/// A 3-by-3 matrix for linear transformations of 3D geometry.
/* This can represent any kind of linear transformations of 3D geometry, which include
* rotation, scale, shear, mirroring, and orthographic projection.
@@ -22,6 +26,7 @@ namespace J3ML::LinearAlgebra {
* vectors in the form M * v. This means that "Matrix3x3 M, M1, M2; M = M1 * M2;" gives a transformation M
* that applies M2 first, followed by M1 second
*/
class Matrix3x3 {
public:
enum { Rows = 3 };
@@ -36,6 +41,8 @@ namespace J3ML::LinearAlgebra {
Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22);
Matrix3x3(const Vector3& r1, const Vector3& r2, const Vector3& r3);
explicit Matrix3x3(const Quaternion& orientation);
explicit Matrix3x3(const float *data);
static Matrix3x3 RotateX(float radians);
static Matrix3x3 RotateY(float radians);
@@ -44,6 +51,10 @@ namespace J3ML::LinearAlgebra {
Vector3 GetRow(int index) const;
Vector3 GetColumn(int index) const;
Vector3 GetRow3(int index) const;
Vector3 GetColumn3(int index) const;
float &At(int row, int col);
float At(int x, int y) const;
@@ -52,10 +63,8 @@ namespace J3ML::LinearAlgebra {
/// Creates a new M3x3 that rotates about the given axis by the given angle
static Matrix3x3 RotateAxisAngle(const Vector3& axis, float angleRadians);
static Matrix3x3 RotateFromTo(const Vector3& source, const Vector3& direction)
{
}
// TODO: Implement
static Matrix3x3 RotateFromTo(const Vector3& source, const Vector3& direction);
void SetRow(int i, const Vector3 &vector3);
void SetColumn(int i, const Vector3& vector);
@@ -121,8 +130,30 @@ namespace J3ML::LinearAlgebra {
Vector3 operator[](int row) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
Matrix3x3 operator * (const Matrix3x3& rhs) const;
Matrix4x4 operator * (const Matrix4x4& rhs) const;
Matrix3x3 Mul(const Matrix3x3& rhs) const;
Matrix4x4 Mul(const Matrix4x4& rhs) const;
Vector2 Mul(const Vector2& rhs) const;
Vector3 Mul(const Vector3& rhs) const;
Vector4 Mul(const Vector4& rhs) const;
Quaternion Mul(const Quaternion& rhs) const;
// Returns true if the column vectors of this matrix are all perpendicular to each other.
bool IsColOrthogonal(float epsilon = 1e-3f) const;
// Returns true if the row vectors of this matrix are all perpendicular to each other.
bool IsRowOrthogonal(float epsilon = 1e-3f) const;
bool HasUniformScale(float epsilon = 1e-3f) const;
Vector3 ExtractScale() const {
return {GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length()};
}
protected:
float elems[3][3];

View File

@@ -1,8 +1,14 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Common.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <algorithm>
namespace J3ML::LinearAlgebra {
/// A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
@@ -40,6 +46,8 @@ namespace J3ML::LinearAlgebra {
/// Constructs this float4x4 to represent the same transformation as the given float3x3.
/** This function expands the last row and column of this matrix with the elements from the identity matrix. */
Matrix4x4(const Matrix3x3&);
explicit Matrix4x4(const float* data);
/// Constructs a new float4x4 by explicitly specifying all the matrix elements.
/// The elements are specified in row-major format, i.e. the first row first followed by the second and third row.
/// E.g. The element _10 denotes the scalar at second (index 1) row, first (index 0) column.
@@ -122,6 +130,7 @@ namespace J3ML::LinearAlgebra {
{
}
Matrix4x4 Scale(const Vector3&);
float &At(int row, int col);
float At(int x, int y) const;
@@ -223,12 +232,16 @@ namespace J3ML::LinearAlgebra {
Matrix4x4 operator *(float scalar) const;
Matrix4x4 operator /(float scalar) const;
Vector4 operator[](int row) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
Vector2 Mul(const Vector2& rhs) const;
Vector3 Mul(const Vector3& rhs) const;
Vector4 Mul(const Vector4& rhs) const;
Matrix4x4 operator * (const Matrix3x3 &rhs) const;
Matrix4x4 operator +() const;
@@ -239,6 +252,18 @@ namespace J3ML::LinearAlgebra {
Matrix4x4 &operator = (const Quaternion& rhs);
Matrix4x4 &operator = (const Matrix4x4& rhs) = default;
Vector3 ExtractScale() const;
bool HasUniformScale(float epsilon = 1e-3f) const;
bool IsColOrthogonal3(float epsilon = 1e-3f) const;
bool IsRowOrthogonal3(float epsilon = 1e-3f) const;
bool IsColOrthogonal(float epsilon = 1e-3f) const;
bool IsRowOrthogonal(float epsilon = 1e-3f) const;
/// Returns true if this matrix is seen to contain a "projective" part,
/// i.e. whether the last row of this matrix differs from [0 0 0 1]
bool ContainsProjection(float epsilon = 1e-3f) const;
protected:
float elems[4][4];

View File

@@ -1,13 +1,22 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
//#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <cmath>
namespace J3ML::LinearAlgebra
{
class Matrix3x3;
class Quaternion : public Vector4 {
public:
Quaternion();
@@ -23,13 +32,9 @@ namespace J3ML::LinearAlgebra
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween);
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween);
//void Inverse();
explicit Quaternion(Vector4 vector4);
@@ -49,15 +54,9 @@ namespace J3ML::LinearAlgebra
Vector3 GetWorldZ() const;
Vector3 GetAxis() const {
float rcpSinAngle = 1 - (std::sqrt(1 - w * w));
Vector3 GetAxis() const;
return Vector3(x, y, z) * rcpSinAngle;
}
float GetAngle() const {
return std::acos(w) * 2.f;
}
float GetAngle() const;
Matrix3x3 ToMatrix3x3() const;
@@ -102,7 +101,7 @@ namespace J3ML::LinearAlgebra
Quaternion operator - () const;
float Dot(const Quaternion &quaternion) const;
float Angle() const { return std::acos(w) * 2.f;}
float Angle() const { return acos(w) * 2.f;}
float AngleBetween(const Quaternion& target) const;

View File

@@ -1,6 +1,6 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
namespace J3ML::LinearAlgebra {

View File

@@ -1,13 +1,15 @@
#pragma once
template <typename T, int Dims>
class templated_vector
#include <cstdlib>
namespace J3ML::LinearAlgebra
{
template <uint DIMS, typename T>
class Vector {
public:
enum { Dimensions = DIMS};
T elems[DIMS];
};
};
using v2f = templated_vector<float, 2>;
using v3f = templated_vector<float, 3>;
using v4f = templated_vector<float, 4>;
}

View File

@@ -1,6 +1,7 @@
#pragma clang diagnostic push
#pragma ide diagnostic ignored "modernize-use-nodiscard"
#pragma once
#include <J3ML/J3ML.h>
#include <J3ML/LinearAlgebra.h>
#include <cstddef>
namespace J3ML::LinearAlgebra {
@@ -9,11 +10,17 @@ namespace J3ML::LinearAlgebra {
/// A 2D (x, y) ordered pair.
class Vector2 {
public:
enum {Dimensions = 2};
/// Default Constructor - Initializes values to zero
Vector2();
/// Constructs a new Vector2 with the value (X, Y)
Vector2(float X, float Y);
Vector2(float* xyPtr);
/// Constructs this float2 from a C array, to the value (data[0], data[1]).
explicit Vector2(const float* data);
// Constructs a new Vector2 with the value {scalar, scalar}
explicit Vector2(float scalar);
Vector2(const Vector2& rhs); // Copy Constructor
//Vector2(Vector2&&) = default; // Move Constructor
@@ -23,16 +30,33 @@ namespace J3ML::LinearAlgebra {
static const Vector2 Down;
static const Vector2 Right;
static const Vector2 NaN;
static const Vector2 Infinity;
float GetX() const;
float GetY() const;
void SetX(float newX);
void SetY(float newY);
float* ptr()
{
return &x;
}
/// Casts this float2 to a C array.
/** This function does not allocate new memory or make a copy of this float2. This function simply
returns a C pointer view to this data structure. Use ptr()[0] to access the x component of this float2
and ptr()[1] to access the y component.
@note Since the returned pointer points to this class, do not dereference the pointer after this
float2 has been deleted. You should never store a copy of the returned pointer.
@note This function is provided for compatibility with other APIs which require raw C pointer access
to vectors. Avoid using this function in general, and instead always use the operator []
or the At() function to access the elements of this vector by index.
@return A pointer to the first float element of this class. The data is contiguous in memory.
@see operator [](), At(). */
float* ptr();
const float *ptr() const;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
const float At(std::size_t index) const;
float &At(std::size_t index);
Vector2 Abs() const;
@@ -42,8 +66,7 @@ namespace J3ML::LinearAlgebra {
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsPerpendicular(const Vector2& other, float epsilonSq=1e-5f) const;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
bool operator == (const Vector2& rhs) const;
bool operator != (const Vector2& rhs) const;
@@ -145,8 +168,9 @@ namespace J3ML::LinearAlgebra {
Vector2 operator +() const; // TODO: Implement
Vector2 operator -() const;
/// Assigns a vector to another
Vector2& operator+=(const Vector2& rhs); // Adds a vector to this vector, in-place.
Vector2& operator-=(const Vector2& rhs); // Subtracts a vector from this vector, in-place
Vector2 &operator =(const Vector2 &rhs);
Vector2& operator+=(const Vector2& rhs);
Vector2& operator-=(const Vector2& rhs);
Vector2& operator*=(float scalar);
Vector2& operator/=(float scalar);
@@ -160,4 +184,5 @@ namespace J3ML::LinearAlgebra {
{
return rhs * lhs;
}
}
}
#pragma clang diagnostic pop

View File

@@ -1,25 +1,26 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector2.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <cstddef>
#include <cstdlib>
#include <J3ML/LinearAlgebra/Angle2D.h>
namespace J3ML::LinearAlgebra {
// A 3D (x, y, z) ordered pair.
class Vector3 {
public:
enum {Dimensions = 3};
// Default Constructor - Initializes to zero
Vector3();
// Constructs a new Vector3 with the value (X, Y, Z)
Vector3(float X, float Y, float Z);
Vector3(const Vector3& rhs); // Copy Constructor
Vector3(Vector3&&) = default; // Move Constructor
Vector3& operator=(const Vector3& rhs);
explicit Vector3(const float* data);
static const Vector3 Zero;
static const Vector3 Up;
@@ -32,44 +33,21 @@ public:
static const Vector3 Infinity;
static const Vector3 NegativeInfinity;
float* ptr()
{
return &x;
}
float* ptr();
static void Orthonormalize(Vector3& a, Vector3& b)
{
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
}
static void Orthonormalize(Vector3& a, Vector3& b);
Vector3 Abs() const;
static Vector3 Abs(const Vector3& rhs);
/// Returns the DirectionVector for a given angle.
static Vector3 Direction(const Vector3 &rhs) ;
static void Orthonormalize(Vector3& a, Vector3& b, Vector3& c);
static void Orthonormalize(Vector3& a, Vector3& b, Vector3& c)
{
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
c = c - c.ProjectToNorm(a);
c = c - c.ProjectToNorm(b);
c = c.Normalize();
}
bool AreOrthonormal(const Vector3& a, const Vector3& b, float epsilon);
bool AreOrthonormal(const Vector3& a, const Vector3& b, float epsilon)
{
}
Vector3 ProjectToNorm(const Vector3& direction)
{
return direction * this->Dot(direction);
}
Vector3 ProjectToNorm(const Vector3& direction) const;
float GetX() const;
float GetY() const;
@@ -88,15 +66,16 @@ public:
bool operator == (const Vector3& rhs) const;
bool operator != (const Vector3& rhs) const;
bool IsFinite() const
{
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
}
bool IsFinite() const;
float MinElement() const;
static float MinElement(const Vector3& of);
Vector3 Min(const Vector3& min) const;
static Vector3 Min(const Vector3& a, const Vector3& b, const Vector3& c);
static Vector3 Min(const Vector3& lhs, const Vector3& rhs);
Vector3 Max(const Vector3& max) const;
static Vector3 Max(const Vector3& a, const Vector3& b, const Vector3& c);
static Vector3 Max(const Vector3& lhs, const Vector3& rhs);
Vector3 Clamp(const Vector3& min, const Vector3& max) const;
@@ -106,6 +85,9 @@ public:
float Distance(const Vector3& to) const;
static float Distance(const Vector3& from, const Vector3& to);
float DistanceSquared(const Vector3& to) const;
static float DistanceSquared(const Vector3& from, const Vector3& to);
float Length() const;
static float Length(const Vector3& of);
@@ -164,26 +146,32 @@ public:
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector3 Mul(const Vector3& rhs) const
{
}
Vector3 Mul(const Vector3& rhs) const;
/// Divides this vector by a scalar
Vector3 operator/(float rhs) const;
Vector3 Div(float scalar) const;
static Vector3 Div(const Vector3& lhs, float rhs);
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector2 Div(const Vector2& v) const;
Vector3 Div(const Vector3& v) const;
/// Unary + operator
Vector3 operator+() const; // TODO: Implement
/// Unary - operator (Negation)
Vector3 operator-() const;
bool Equals(const Vector3& rhs, float epsilon = 1e-3f) const;
bool Equals(float _x, float _y, float _z, float epsilon = 1e-3f) const;
Vector3 &operator =(const Vector3& rhs);
Vector3& operator+=(const Vector3& rhs);
Vector3& operator-=(const Vector3& rhs);
Vector3& operator*=(float scalar);
Vector3& operator/=(float scalar);
public:
float x = 0;
float y = 0;

View File

@@ -1,6 +1,7 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace J3ML::LinearAlgebra {
class Vector4 {
@@ -19,6 +20,10 @@ namespace J3ML::LinearAlgebra {
{
return &x;
}
Vector3 XYZ() const
{
return {x, y, z};
}
float GetX() const;
float GetY() const;
@@ -44,6 +49,9 @@ namespace J3ML::LinearAlgebra {
bool operator==(const Vector4& rhs) const;
bool operator!=(const Vector4& rhs) const;
bool Equals(const Vector4& rhs, float epsilon = 1e-3f) const;
bool Equals(float _x, float _y, float _z, float _w, float epsilon = 1e-3f) const;
Vector4 Min(const Vector4& min) const;
Vector4 Max(const Vector4& max) const;
Vector4 Clamp(const Vector4& min, const Vector4& max) const;

19
include/J3ML/Units.h Normal file
View File

@@ -0,0 +1,19 @@
#pragma once
namespace J3ML::Units
{
template <typename T>
class Rotation
{
T GetDegrees() const;
T GetRadians() const;
void SetDegrees(T val);
void SetRadians(T val);
};
using Rotationf = Rotation<float>;
using Rotationd = Rotation<double>;
}

View File

@@ -4,7 +4,7 @@
namespace J3ML::Algorithm {
void RNG::Seed(J3ML::u32 seed, J3ML::u32 multiplier, J3ML::u32 increment, J3ML::u32 modulus) {
void RNG::Seed(u32 seed, u32 multiplier, u32 increment, u32 modulus) {
// If we have a pure multiplicative RNG, then can't have 0 starting seed, since that would generate a stream of all zeroes
if (seed == 0 && increment == 0) seed = 1;

View File

@@ -1,11 +1,42 @@
#include <J3ML/Geometry/AABB.h>
#include <cassert>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
//#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Algorithm/RNG.h>
namespace J3ML::Geometry {
/// See Christer Ericson's Real-time Collision Detection, p. 87, or
/// James Arvo's "Transforming Axis-aligned Bounding Boxes" in Graphics Gems 1, pp. 548-550.
/// http://www.graphicsgems.org/
template<typename Matrix>
void AABBTransformAsAABB(AABB &aabb, Matrix &m)
{
const Vector3 centerPoint = (aabb.minPoint + aabb.maxPoint) * 0.5f;
const Vector3 halfSize = centerPoint - aabb.minPoint;
Vector3 newCenter = m.Mul(centerPoint);
// The following is equal to taking the absolute value of the whole matrix m.
Vector3 newDir = Vector3(std::abs(m[0][0] * halfSize.x) + std::abs(m[0][1] * halfSize.y) + std::abs(m[0][2] * halfSize.z),
std::abs(m[1][0] * halfSize.x) + std::abs(m[1][1] * halfSize.y) + std::abs(m[1][2] * halfSize.z),
std::abs(m[2][0] * halfSize.x) + std::abs(m[2][1] * halfSize.y) + std::abs(m[2][2] * halfSize.z));
aabb.minPoint = newCenter - newDir;
aabb.maxPoint = newCenter + newDir;
}
AABB AABB::FromCenterAndSize(const J3ML::Geometry::Vector3 &center, const J3ML::Geometry::Vector3 &size) {
Vector3 halfSize = size * 0.5f;
return {center - halfSize, center + halfSize};
return AABB{center - halfSize, center + halfSize};
}
float AABB::MinX() const { return minPoint.x; }
@@ -178,18 +209,23 @@ namespace J3ML::Geometry {
void AABB::SetFromCenterAndSize(const Vector3& center, const Vector3& size)
{
Vector3 halfSize = 0.5f * size;
minPoint = center - halfSize;
maxPoint = center + halfSize;
}
void AABB::SetFrom(const OBB& obb)
{
Vector3 halfSize = Vector3::Abs(obb.axis[0] * obb.r[0]) + Vector3::Abs(obb.axis[1]*obb.r[1]) + Vector3::Abs(obb.axis[2]*obb.r[2]);
SetFromCenterAndSize(obb.pos, 2.f*halfSize);
}
void AABB::SetFrom(const Sphere& s)
{
Vector3 d = Vector3(s.Radius, s.Radius, s.Radius);
minPoint = s.Position - d;
maxPoint = s.Position + d;
}
void AABB::SetFrom(const Vector3 *pointArray, int numPoints) {
@@ -201,8 +237,12 @@ namespace J3ML::Geometry {
Enclose(pointArray[i]);
}
Vector3 AABB::GetRandomPointInside() const {
Vector3 AABB::GetRandomPointInside(J3ML::Algorithm::RNG &rng) const {
float f1 = rng.Float();
float f2 = rng.Float();
float f3 = rng.Float();
return PointInside(f1, f2, f3);
}
void AABB::SetNegativeInfinity() {
@@ -234,4 +274,349 @@ namespace J3ML::Geometry {
Vector3 d = obb.r.x * absAxis0 + obb.r.y * absAxis1 + obb.r.z * absAxis2;
}
Vector3 AABB::GetClosestPoint(const Vector3 &point) const {
Vector3 result = point;
if (point.x > this->maxPoint.x)
result.x = this->maxPoint.x;
else if (point.x < this->minPoint.x)
result.x = this->minPoint.x;
else
result.x = point.x;
if (point.y > this->maxPoint.y)
result.y = this->maxPoint.y;
else if (point.y < this->minPoint.y)
result.y = this->minPoint.y;
else
result.y = point.y;
if (point.z > this->maxPoint.z)
result.z = this->maxPoint.z;
else if (point.z < this->minPoint.z)
result.z = this->minPoint.z;
else
result.z = point.z;
}
AABB::AABB(const Vector3 &min, const Vector3 &max) : Shape(), minPoint(min), maxPoint(max)
{
}
AABB::AABB() : Shape() {}
float Max(float a, float b)
{
return std::max(a, b);
}
float Max(float a, float b, float c)
{
return std::max(a, std::max(b, c));
}
float Min(float a, float b, float c)
{
return std::min(a, std::min(b, c));
}
// Compute the face normals of the AABB, because the AABB is at center
// and (of course) axis aligned, we know it's normals are the X,Y,Z axes.
Vector3 u0 = Vector3(1.f, 0.f, 0.f);
Vector3 u1 = Vector3(0.f, 1.f, 0.f);
Vector3 u2 = Vector3(0.f, 0.f, 1.f);
bool AABB::TestAxis(const Vector3& axis, const Vector3& v0, const Vector3& v1, const Vector3& v2) const
{
Vector3 e = this->Size();
// Testing axis: axis_u0_f0
// Project all 3 vertices of the triangle onto the Separating axis
float p0 = Vector3::Dot(v0, axis);
float p1 = Vector3::Dot(v1, axis);
float p2 = Vector3::Dot(v2, axis);
// Project the AABB onto the separating axis
// We don't care about the end points of the projection
// just the length of the half-size of the AABB
// that is, we're only casting the extents onto the
// separating axis, not the AABB center. We don't
// need to cast the center, because we know that the
// AABB is at origin compared to the triangle!
float r = e.x * std::abs(Vector3::Dot(u0, axis)) +
e.y * std::abs(Vector3::Dot(u1, axis)) +
e.z * std::abs(Vector3::Dot(u2, axis));
// Now do the actual test, basically see if either of
// the most extreme of the triangle points intersects r
// You might need to write Min & Max functions that take 3 arguments
if (Max(Max(p0, p1, p2), Min(p0, p1, p2)) > r)
{
// This means BOTH of the points of the projected triangle
// are outside the projected half-length of the AABB
// Therefore the axis is separating and we can exit
return false;
}
return true;
}
bool AABB::Intersects(const Triangle &triangle) const {
// https://gdbooks.gitbooks.io/3dcollisions/content/Chapter4/aabb-triangle.html
Vector3 v0 = triangle.V0;
Vector3 v1 = triangle.V1;
Vector3 v2 = triangle.V2;
// Convert AABB to center-extentss form
Vector3 c = this->Centroid();
Vector3 e = this->Size();
// Translate the triangle as conceptually moving the AABB to origin
// This is the same as we did with the point in triangle test
v0 -= c;
v1 -= c;
v2 -= c;
// Compute the edge vectors of the triangle
// That is , get the lines between the points as vectors
Vector3 f0 = v1 - v0; // B - A
Vector3 f1 = v2 - v1; // C - B
Vector3 f2 = v0 - v2; // A - C
// There are a total of 13 axes to test!!!
// We first test against 9 axis, these axes are given by cross product combinations
// of the edges of the triangle and the edges of the AABB. You need to get an axis testing each of the 3 sides
// of the AABB against each of the 3 sides of the triangle. The result is 9 axes of separation.
// Compute the 9 axes
Vector3 axis_u0_f0 = Vector3::Cross(u0, f0);
Vector3 axis_u0_f1 = Vector3::Cross(u0, f1);
Vector3 axis_u0_f2 = Vector3::Cross(u0, f2);
Vector3 axis_u1_f0 = Vector3::Cross(u1, f0);
Vector3 axis_u1_f1 = Vector3::Cross(u1, f1);
Vector3 axis_u1_f2 = Vector3::Cross(u1, f2);
Vector3 axis_u2_f0 = Vector3::Cross(u1, f0);
Vector3 axis_u2_f1 = Vector3::Cross(u1, f1);
Vector3 axis_u2_f2 = Vector3::Cross(u1, f2);
if (TestAxis(axis_u0_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u0_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u0_f2, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u1_f2, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f0, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f1, v0, v1, v2)) return true;
if (TestAxis(axis_u2_f2, v0, v1, v2)) return true;
// Next we have 3 face normals from the AABB
// for these tests we are conceptually checking if the bounding box
// of the triangle intersects the bounding box of the AABB
// that is to say, the separating axis for all tests are axis aligned:
// axis1: (1, 0, 0), axis2: (0, 1, 0), axis3: (0, 0, 1)
// Do the SAT given the 3 primary axes of the AABB
// You already have two vectors for this: u0, u1, and u2
if (TestAxis(u0, v0, v1, v2)) return true;
if (TestAxis(u1, v0, v1, v2)) return true;
if (TestAxis(u2, v0, v1, v2)) return true;
// Finally we have one last axis to test, the face normal of the triangle
// We can get the normal of the triangle by crossing the first two line segments
Vector3 triangleNormal = Vector3::Cross(f0, f1);
if (TestAxis(triangleNormal, u0, u1, u2))
return true;
// Passed testing for all 13 separating axes that exist
return false;
}
Vector3 AABB::AnyPointFast() const { return minPoint;}
Vector3 AABB::GetRandomPointOnSurface(RNG &rng) const {
int i = rng.Int(0, 5);
float f1 = rng.Float();
float f2 = rng.Float();
return FacePoint(i, f1, f2);
}
Vector3 AABB::GetRandomPointOnEdge(RNG &rng) const {
int i = rng.Int(0, 11);
float f = rng.Float();
return PointOnEdge(i, f);
}
Vector3 AABB::GetRandomCornerPoint(RNG &rng) const {
return CornerPoint(rng.Int(0, 7));
}
void AABB::Translate(const Vector3 &offset) {
minPoint += offset;
maxPoint += offset;
}
AABB AABB::Translated(const Vector3 &offset) const {
return AABB(minPoint+offset, maxPoint+offset);
}
AABB AABB::TransformAABB(const Matrix3x3 &transform) {
// TODO: assert(transform.IsColOrthogonal());
// TODO: assert(transform.HasUniformScale());
AABBTransformAsAABB(*this, transform);
}
AABB AABB::TransformAABB(const Matrix4x4 &transform) {
// TODO: assert(transform.IsColOrthogonal());
// TODO: assert(transform.HasUniformScale());
// TODO: assert(transform.Row(3).Equals(0,0,0,1));
AABBTransformAsAABB(*this, transform);
}
AABB AABB::TransformAABB(const Quaternion &transform) {
Vector3 newCenter = transform.Transform(Centroid());
Vector3 newDir = Vector3::Abs((transform.Transform(Size())*0.5f));
minPoint = newCenter - newDir;
maxPoint = newCenter + newDir;
}
OBB AABB::Transform(const Matrix3x3 &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
bool AABB::Contains(const Vector3 &aabbMinPoint, const Vector3 &aabbMaxPoint) const {
return minPoint.x <= aabbMinPoint.x && maxPoint.x >= aabbMaxPoint.x &&
minPoint.y <= aabbMinPoint.y && maxPoint.y >= aabbMaxPoint.y &&
minPoint.z <= aabbMinPoint.z && maxPoint.z >= aabbMaxPoint.z;
}
bool AABB::Contains(const LineSegment &lineSegment) const {
return Contains(Vector3::Min(lineSegment.A, lineSegment.B), Vector3::Max(lineSegment.A, lineSegment.B));
}
bool AABB::Contains(const Vector3 &point) const {
return minPoint.x <= point.x && point.x <= maxPoint.x &&
minPoint.y <= point.y && point.y <= maxPoint.y &&
minPoint.z <= point.z && point.z <= maxPoint.z;
}
OBB AABB::Transform(const Matrix4x4 &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
OBB AABB::Transform(const Quaternion &transform) const {
OBB obb;
obb.SetFrom(*this, transform);
return obb;
}
bool AABB::Contains(const AABB &aabb) const {
return Contains(aabb.minPoint, aabb.maxPoint);
}
bool AABB::Contains(const OBB &obb) const {
return Contains(obb.MinimalEnclosingAABB());
}
bool AABB::Contains(const Sphere &sphere) const {
auto radiusVec = Vector3(sphere.Radius,sphere.Radius, sphere.Radius);
return Contains(sphere.Position - radiusVec, sphere.Position + radiusVec);
}
bool AABB::Contains(const Capsule &capsule) const {
return Contains(capsule.MinimalEnclosingAABB());
}
bool AABB::Contains(const Triangle &triangle) const {
return Contains(triangle.BoundingAABB());
}
bool AABB::Contains(const Polygon &polygon) const {
return Contains(polygon.MinimalEnclosingAABB());
}
bool AABB::Contains(const Frustum &frustum) const {
return Contains(frustum.MinimalEnclosingAABB());
}
bool AABB::Contains(const Polyhedron &polyhedron) const {
return Contains(polyhedron.MinimalEnclosingAABB());
}
bool AABB::IntersectLineAABB(const Vector3 &linePos, const Vector3 &lineDir, float tNear, float tFar) const {
//assert(lineDir.IsNormalized() && lineDir && lineDir.LengthSquared());
assert(tNear <= tFar && "");
// The user should have inputted values for tNear and tFar to specify the desired subrange [tNear, tFar] of the line
// for this intersection test.
// For a Line-AABB test, pass in
// tNear = -FLOAT_INF;
// tFar = FLOAT_INF;
// For a Ray-AABB test, pass in
// tNear = 0.f;
// tFar = FLOAT_INF;
// For a LineSegment-AABB test, pass in
// tNear = 0.f;
// tFar = LineSegment.Length();
// Test each cardinal plane (X, Y, and Z) in turn.
if (!Math::EqualAbs(lineDir.x, 0.f)) {
float recipDir = 1.f / lineDir.x;
float t1 = (minPoint.x - linePos.x) * recipDir;
float t2 = (maxPoint.x - linePos.x) * recipDir;
// tNear tracks distance to intersect (enter) the AABB
// tFar tracks the distance to exit the AABB
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else // swap t1 and t2;
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false; // Box is missed since we "exit" before entering it
}
else if (linePos.x < minPoint.x || linePos.x > maxPoint.x)
return false; // the ray can't possibly enter the box
if (!Math::EqualAbs(lineDir.y, 0.f)) // ray is parallel to plane in question
{
float recipDir = 1.f / lineDir.y;
float t1 = (minPoint.y - linePos.y) * recipDir;
float t2 = (maxPoint.y - linePos.y) * recipDir;
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
if (tNear > tFar)
return false;
}
else if (linePos.y < minPoint.y || linePos.y > maxPoint.y)
return false; // The ray can't possibly enter the box, abort.
if (!Math::EqualAbs(lineDir.z, 0.f)) // ray is parallel to plane in question
{
float recipDir = 1.f / lineDir.z;
float t1 = (minPoint.z - linePos.z) * recipDir;
float t2 = (maxPoint.z - linePos.z) * recipDir;
if (t1 < t2)
tNear = std::max(t1, tNear), tFar = std::min(t2, tFar);
else // Swap t1 and t2.
tNear = std::max(t2, tNear), tFar = std::min(t1, tFar);
} else if (linePos.z < minPoint.z || linePos.z > maxPoint.z)
return false;
return tNear <= tFar;
}
}

View File

@@ -0,0 +1,80 @@
#include <J3ML/Geometry/AABB2D.h>
namespace J3ML::Geometry
{
float AABB2D::Width() const { return maxPoint.x - minPoint.x; }
float AABB2D::Height() const { return maxPoint.y - minPoint.y; }
float AABB2D::DistanceSq(const Vector2 &pt) const {
Vector2 cp = pt.Clamp(minPoint, maxPoint);
return cp.DistanceSq(pt);
}
void AABB2D::SetNegativeInfinity() {
minPoint = Vector2::Infinity;
maxPoint = -Vector2::Infinity;
}
void AABB2D::Enclose(const Vector2 &point) {
minPoint = Vector2::Min(minPoint, point);
maxPoint = Vector2::Max(maxPoint, point);
}
bool AABB2D::Intersects(const AABB2D &rhs) const {
return maxPoint.x >= rhs.minPoint.x &&
maxPoint.y >= rhs.minPoint.y &&
rhs.maxPoint.x >= minPoint.x &&
rhs.maxPoint.y >= minPoint.y;
}
bool AABB2D::Contains(const AABB2D &rhs) const {
return rhs.minPoint.x >= minPoint.x && rhs.minPoint.y >= minPoint.y
&& rhs.maxPoint.x <= maxPoint.x && rhs.maxPoint.y <= maxPoint.y;
}
bool AABB2D::Contains(const Vector2 &pt) const {
return pt.x >= minPoint.x && pt.y >= minPoint.y
&& pt.x <= maxPoint.x && pt.y <= maxPoint.y;
}
bool AABB2D::Contains(int x, int y) const {
return x >= minPoint.x && y >= minPoint.y
&& x <= maxPoint.x && y <= maxPoint.y;
}
bool AABB2D::IsDegenerate() const {
return minPoint.x >= maxPoint.x || minPoint.y >= maxPoint.y;
}
bool AABB2D::HasNegativeVolume() const {
return maxPoint.x < minPoint.x || maxPoint.y < minPoint.y;
}
bool AABB2D::IsFinite() const {
return minPoint.IsFinite() && maxPoint.IsFinite() && minPoint.MinElement() > -1e5f && maxPoint.MaxElement() < 1e5f;
}
Vector2 AABB2D::PosInside(const Vector2 &normalizedPos) const {
return minPoint + normalizedPos.Mul(maxPoint - minPoint);
}
Vector2 AABB2D::ToNormalizedLocalSpace(const Vector2 &pt) const {
return (pt - minPoint).Div(maxPoint - minPoint);
}
AABB2D AABB2D::operator+(const Vector2 &pt) const {
AABB2D a;
a.minPoint = minPoint + pt;
a.maxPoint = maxPoint + pt;
return a;
}
AABB2D AABB2D::operator-(const Vector2 &pt) const {
AABB2D a;
a.minPoint = minPoint - pt;
a.maxPoint = maxPoint - pt;
return a;
}
}

View File

@@ -1,7 +1,15 @@
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/AABB.h>
namespace J3ML::Geometry
{
Capsule::Capsule() : l() {}
AABB Capsule::MinimalEnclosingAABB() const
{
Vector3 d = Vector3(r, r, r);
AABB aabb(Vector3::Min(l.A, l.B) - d, Vector3::Max(l.A, l.B) + d);
return aabb;
}
}

View File

@@ -1,4 +1,5 @@
#include <J3ML/Geometry/Frustum.h>
#include <cmath>
namespace J3ML::Geometry
{

View File

@@ -1,3 +1,383 @@
//
// Created by dawsh on 1/25/24.
//
#include <J3ML/Geometry/Shape.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
Polyhedron OBB::ToPolyhedron() const {
// Note to maintainer: This function is an exact copy of AABB::ToPolyhedron() and Frustum::ToPolyhedron()
Polyhedron p;
// populate the corners of this OBB
// this will be in the order 0: ---, 1: --+, 2: -+-, 3: -++, 4: +--, 5: +-+, 6: ++-, 7: +++
for (int i = 0; i < 8; ++i)
{
p.v.push_back(CornerPoint(i));
}
// generate the 6 faces of this OBB.
const int faces[6][4] =
{
{0, 1, 3, 2}, // X-
{4, 6, 7, 5}, // X+
{0, 4, 5, 1}, // Y-
{7, 6, 2, 3}, // Y+
{0, 2, 6, 4}, // Z-
{1, 5, 7, 3} // Z+
};
for (int f = 0; f < 6; ++f)
{
Polyhedron::Face face;
for (int v = 0; v < 4; ++v)
{
face.v.push_back(faces[f][v]);
}
//p.f.push_back(face);
}
return p;
}
Sphere OBB::MinimalEnclosingSphere() const {
Sphere s;
s.Position = pos;
s.Radius = HalfDiagonal().Length();
return s;
}
Sphere OBB::MaximalContainedSphere() const {
Sphere s;
s.Position = pos;
s.Radius = r.MinElement();
return s;
}
bool OBB::IsFinite() const {
return pos.IsFinite() && r.IsFinite() && axis[0].IsFinite() && axis[1].IsFinite() && axis[2].IsFinite();
}
bool OBB::IsDegenerate() const
{
return !(r.x > 0.f && r.y > 0.f && r.z > 0.f);
}
Vector3 OBB::CenterPoint() const
{
return pos;
}
Vector3 OBB::PointInside(float x, float y, float z) const
{
assert(0.f <= x && x <= 1.f);
assert(0.f <= y && y <= 1.f);
assert(0.f <= z && z <= 1.f);
return pos + axis[0] * (2.f * r.x * x - r.x)
+ axis[1] * (2.f * r.y * y - r.y)
+ axis[2] * (2.f * r.z * z - r.z);
}
Vector3 OBB::PointInside(const Vector3& pt) const
{
return PointInside(pt.x, pt.y, pt.z);
}
LineSegment OBB::Edge(int edgeIndex) const
{
assert(0 <= edgeIndex && edgeIndex <= 11);
switch(edgeIndex)
{
default: // For release builds where Assert() is disabled, return always the first option if out-of-bounds
case 0: return LineSegment(CornerPoint(0), CornerPoint(1));
case 1: return LineSegment(CornerPoint(0), CornerPoint(2));
case 2: return LineSegment(CornerPoint(0), CornerPoint(4));
case 3: return LineSegment(CornerPoint(1), CornerPoint(3));
case 4: return LineSegment(CornerPoint(1), CornerPoint(5));
case 5: return LineSegment(CornerPoint(2), CornerPoint(3));
case 6: return LineSegment(CornerPoint(2), CornerPoint(6));
case 7: return LineSegment(CornerPoint(3), CornerPoint(7));
case 8: return LineSegment(CornerPoint(4), CornerPoint(5));
case 9: return LineSegment(CornerPoint(4), CornerPoint(6));
case 10: return LineSegment(CornerPoint(5), CornerPoint(7));
case 11: return LineSegment(CornerPoint(6), CornerPoint(7));
}
}
Vector3 OBB::CornerPoint(int cornerIndex) const
{
assert(0 <= cornerIndex && cornerIndex <= 7);
switch(cornerIndex)
{
default: // For release builds, return always the first option if out of bounds
case 0: return pos - r.x * axis[0] - r.y * axis[1] - r.z * axis[2];
case 1: return pos - r.x * axis[0] - r.y * axis[1] + r.z * axis[2];
case 2: return pos - r.x * axis[0] + r.y * axis[1] - r.z * axis[2];
case 3: return pos - r.x * axis[0] + r.y * axis[1] + r.z * axis[2];
case 4: return pos + r.x * axis[0] - r.y * axis[1] - r.z * axis[2];
case 5: return pos + r.x * axis[0] - r.y * axis[1] + r.z * axis[2];
case 6: return pos + r.x * axis[0] + r.y * axis[1] - r.z * axis[2];
case 7: return pos + r.x * axis[0] + r.y * axis[1] + r.z * axis[2];
}
}
Vector3 OBB::ExtremePoint(const Vector3& direction) const
{
Vector3 pt = pos;
pt += axis[0] * (Vector3::Dot(direction, axis[0]) >= 0.f ? r.x : -r.x);
pt += axis[1] * (Vector3::Dot(direction, axis[1]) >= 0.f ? r.y : -r.y);
pt += axis[2] * (Vector3::Dot(direction, axis[2]) >= 0.f ? r.z : -r.z);
return pt;
}
Vector3 OBB::ExtremePoint(const Vector3& direction, float &projectionDistance) const
{
Vector3 extremePoint = ExtremePoint(direction);
projectionDistance = extremePoint.Dot(direction);
return extremePoint;
}
void OBB::ProjectToAxis(const Vector3& direction, float& outMin, float& outMax) const
{
float x = std::abs(Vector3::Dot(direction, axis[0]) * r.x);
float y = std::abs(Vector3::Dot(direction, axis[1]) * r.y);
float z = std::abs(Vector3::Dot(direction, axis[2]) * r.z);
float pt = Vector3::Dot(direction, pos);
outMin = pt - x - y - z;
outMax = pt + x + y + z;
}
int OBB::UniqueFaceNormals(Vector3* out) const
{
out[0] = axis[0];
out[1] = axis[1];
out[2] = axis[2];
return 3;
}
int OBB::UniqueEdgeDirections(Vector3* out) const
{
out[0] = axis[0];
out[1] = axis[1];
out[2] = axis[2];
return 3;
}
Vector3 OBB::PointOnEdge(int edgeIndex, float u) const
{
assert(0 <= edgeIndex && edgeIndex <= 11);
assert(0 <= u && u <= 1.f);
edgeIndex = std::clamp(edgeIndex, 0, 11);
Vector3 d = axis[edgeIndex/4] * (2.f * u - 1.f) * r[edgeIndex/4];
switch(edgeIndex)
{
default:
case 0: return pos - r.y * axis[1] - r.z * axis[2] + d;
case 1: return pos - r.y * axis[1] + r.z * axis[2] + d;
case 2: return pos + r.y * axis[1] - r.z * axis[2] + d;
case 3: return pos + r.y * axis[1] + r.z * axis[2] + d;
case 4: return pos - r.x * axis[0] - r.z * axis[2] + d;
case 5: return pos - r.x * axis[0] + r.z * axis[2] + d;
case 6: return pos + r.x * axis[0] - r.z * axis[2] + d;
case 7: return pos + r.x * axis[0] + r.z * axis[2] + d;
case 8: return pos - r.x * axis[0] - r.y * axis[1] + d;
case 9: return pos - r.x * axis[0] + r.y * axis[1] + d;
case 10: return pos + r.x * axis[0] - r.y * axis[1] + d;
case 11: return pos + r.x * axis[0] + r.y * axis[1] + d;
}
}
Vector3 OBB::FaceCenterPoint(int faceIndex) const
{
assert(0 <= faceIndex && faceIndex <= 6);
switch(faceIndex)
{
default:
case 0: return pos - r.x * axis[0];
case 1: return pos + r.x * axis[0];
case 2: return pos - r.y * axis[1];
case 3: return pos + r.y * axis[1];
case 4: return pos - r.z * axis[2];
case 5: return pos + r.z * axis[2];
}
}
Vector3 OBB::FacePoint(int faceIndex, float u, float v) const
{
assert(0 <= faceIndex && faceIndex <= 5);
assert(0 <= u && u <= 1.f);
assert(0 <= v && v <= 1.f);
int uIdx = faceIndex/2;
int vIdx = (faceIndex/2 + 1) % 3;
Vector3 U = axis[uIdx] * (2.f * u - 1.f) * r[uIdx];
Vector3 V = axis[vIdx] * (2.f * v - 1.f) * r[vIdx];
switch(faceIndex)
{
default:
case 0: return pos - r.z * axis[2] + U + V;
case 1: return pos + r.z * axis[2] + U + V;
case 2: return pos - r.x * axis[0] + U + V;
case 3: return pos + r.x * axis[0] + U + V;
case 4: return pos - r.y * axis[1] + U + V;
case 5: return pos + r.y * axis[1] + U + V;
}
}
Plane OBB::FacePlane(int faceIndex) const
{
assert(0 <= faceIndex && faceIndex <= 5);
switch(faceIndex)
{
default:
case 0: return Plane(FaceCenterPoint(0), -axis[0]);
case 1: return Plane(FaceCenterPoint(1), axis[0]);
case 2: return Plane(FaceCenterPoint(2), -axis[1]);
case 3: return Plane(FaceCenterPoint(3), axis[1]);
case 4: return Plane(FaceCenterPoint(4), -axis[2]);
case 5: return Plane(FaceCenterPoint(5), axis[2]);
}
}
void OBB::GetCornerPoints(Vector3 *outPointArray) const
{
assert(outPointArray);
for (int i = 0; i < 8; ++i)
outPointArray[i] = CornerPoint(i);
}
void OBB::GetFacePlanes(Plane *outPlaneArray) const
{
assert(outPlaneArray);
for (int i = 0; i < 6; ++i)
outPlaneArray[i] = FacePlane(i);
}
void OBB::ExtremePointsAlongDirection(const Vector3& dir, const Vector3* pointArray, int numPoints, int &idxSmallest, int &idxLargest, float &smallestD, float &largestD)
{
assert(pointArray || numPoints == 0);
idxSmallest = idxLargest = 0;
smallestD = INFINITY;
largestD = -INFINITY;
for (int i = 0; i < numPoints; ++i)
{
float d = Vector3::Dot(pointArray[i], dir);
if (d < smallestD)
{
smallestD = d;
idxSmallest = i;
}
if (d > largestD)
{
largestD = d;
idxLargest = i;
}
}
}
Vector3 OBB::Size() const {
return r * 2.f;
}
Vector3 OBB::HalfSize() const {
return r;
}
Vector3 OBB::Diagonal() const {
return 2.f * HalfDiagonal();
}
Vector3 OBB::HalfDiagonal() const {
return axis[0] * r[0] + axis[1] * r[1] + axis[2] * r[2];
}
float OBB::Volume() const {
Vector3 size = Size();
return size.x*size.y*size.z;
}
float OBB::SurfaceArea() const {
const Vector3 size = Size();
return 2.f * (size.x*size.y + size.x*size.z + size.y*size.z);
}
template <typename Matrix>
void OBBSetFrom(OBB &obb, const AABB& aabb, const Matrix& m)
{
assert(m.IsColOrthogonal()); // We cannot convert transform an AABB to OBB if it gets sheared in the process.
assert(m.HasUniformScale()); // Nonuniform scale will produce shear as well
obb.pos = m.Mul(aabb.Centroid());
obb.r = aabb.HalfSize();
obb.axis[0] = Vector3(m.GetColumn3(0));
obb.axis[1] = Vector3(m.GetColumn3(1));
obb.axis[2] = Vector3(m.GetColumn3(2));
// If te matrix m contains scaling, propagate the scaling from the axis vectors to the half-length vectors,
// since we want to keep the axis vectors always normalized in our representations.
float matrixScale = obb.axis[0].LengthSquared();
matrixScale = std::sqrt(matrixScale);
obb.r *= matrixScale;
matrixScale = 1.f / matrixScale;
obb.axis[0] *= matrixScale;
obb.axis[1] *= matrixScale;
obb.axis[2] *= matrixScale;
Vector3::Orthonormalize(obb.axis[0], obb.axis[1], obb.axis[2]);
}
template <typename Matrix>
void OBBTransform(OBB& o, const Matrix& transform)
{
o.pos = transform.Mul(o.pos);
o.axis[0] = transform.Mul(o.r.x * o.axis[0]);
o.axis[1] = transform.Mul(o.r.y * o.axis[1]);
o.axis[2] = transform.Mul(o.r.z * o.axis[2]);
o.r.x = o.axis[0].Normalize().x;
o.r.y = o.axis[1].Normalize().y;
o.r.z = o.axis[2].Normalize().z;
}
void OBB::SetFrom(const AABB& aabb, const Matrix3x3 &transform) {
assert(transform.IsColOrthogonal());
OBBSetFrom(*this, aabb, transform);
}
void OBB::SetFrom(const AABB& aabb, const Matrix4x4 &transform) {
assert(transform.IsColOrthogonal3());
OBBSetFrom(*this, aabb, transform);
}
void OBB::SetFrom(const AABB& aabb, const Quaternion &transform) {
OBBSetFrom(*this, aabb, Matrix3x3(transform));
}
void OBB::Transform(const Matrix3x3 &transform) {
assert(transform.IsColOrthogonal());
OBBTransform(*this, transform);
}
void OBB::Transform(const Matrix4x4 &transform) {
assert(transform.IsColOrthogonal3());
OBBTransform(*this, transform);
}
void OBB::Transform(const Quaternion &transform) {
OBBTransform(*this, transform.ToMatrix3x3());
}
}

View File

@@ -1,5 +1,14 @@
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/AABB.h>
namespace J3ML::Geometry {
AABB Polygon::MinimalEnclosingAABB() const {
AABB aabb;
aabb.SetNegativeInfinity();
for(int i = 0; i < NumVertices(); ++i)
aabb.Enclose(Vertex(i));
return aabb;
}
}
namespace Geometry {
}

View File

@@ -1,6 +1,19 @@
#include <J3ML/Geometry/Polyhedron.h>
#include <J3ML/Geometry/AABB.h>
namespace Geometry
namespace J3ML::Geometry
{
AABB Polyhedron::MinimalEnclosingAABB() const {
AABB aabb;
aabb.SetNegativeInfinity();
for (int i = 0; i < NumVertices(); ++i)
aabb.Enclose(Vertex(i));
return aabb;
}
Vector3 Polyhedron::Vertex(int vertexIndex) const {
return v[vertexIndex];
}
}
}

View File

@@ -1,6 +1,126 @@
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/Sphere.h>
namespace Geometry
namespace J3ML::Geometry
{
RaycastResult Ray::Cast(const Sphere &target, float maxDistance)
{
Vector3 p0 = this->Origin;
Vector3 d = this->Direction.Normalize();
Vector3 c = target.Position;
float r = target.Radius;
Vector3 e = c - p0;
// Using Length here would cause floating point error to creep in
float Esq = Vector3::LengthSquared(e);
float a = Vector3::Dot(e, d);
float b = std::sqrt(Esq - (a*a));
float f = std::sqrt((r*r) - (b*b));
float t = 0;
// No collision
if (r * r - Esq + a * a < 0.f)
{
t = -1;
} else if ( Esq < r*r) {
t = a + f;
} else
{
t = a - f;
}
// TODO: Verify this
Vector3 intersection = p0.Project(d*t);
Vector3 intersection_from_sphere_origin = (intersection - target.Position);
Vector3 normal = -intersection_from_sphere_origin.Normalize();
return RaycastResult{
intersection,
normal,
true,
(Shape *) &target
};
}
RaycastResult Ray::Cast(const AABB &target, float maxDistance) {
float t1 = (target.minPoint.x - Origin.x) / Direction.x;
float t2 = (target.maxPoint.x - Origin.x) / Direction.x;
float t3 = (target.minPoint.y - Origin.y) / Direction.y;
float t4 = (target.maxPoint.y - Origin.y) / Direction.y;
float t5 = (target.minPoint.z - Origin.z) / Direction.z;
float t6 = (target.maxPoint.z - Origin.z) / Direction.z;
float tmin = std::max( std::max( std::min(t1, t2), std::min(t3, t4)), std::min(t5, t6));
float tmax = std::min( std::min( std::max(t1, t2), std::max(t3, t4)), std::max(t5, t6));
// if tmax < 0, ray is intersecting aabb, but whole aabb is behind us.
if (tmax < 0)
return RaycastResult::NoHit();
// if tmin > tmax, ray doesn't intersect AABB
if (tmin > tmax)
return RaycastResult::NoHit();
float t = 0.f;
if (tmin < 0.f)
t = tmax;
t = tmin;
Vector3 p0 = this->Origin;
Vector3 d = this->Direction.Normalize();
// TODO: Verify this
Vector3 intersection = p0.Project(d*t);
// WTF: This algorithm is only valid for spheres!!!
// TODO: Calculate surfacenormal against rectangle
Vector3 intersection_from_sphere_origin = (intersection - target.Centroid());
Vector3 normal = -intersection_from_sphere_origin.Normalize();
return RaycastResult
{
intersection,
normal,
true,
(Shape*)&target
};
}
RaycastResult Ray::Cast(const Plane &target, float maxDistance) {
float nd = Vector3::Dot(Direction, target.Normal);
float pn = Vector3::Dot(Origin, target.Normal);
if (nd >= 0.f)
return RaycastResult::NoHit();
float t = (target.distance - pn) / nd;
Vector3 d = this->Direction.Normalize();
// TODO: verify this
Vector3 intersection = this->Origin.Project(d*t);
// TODO: flip the axis based on direction of incoming ray?
// Take dot product
Vector3 normal = target.Normal;
if (t >= 0.f)
return RaycastResult
{
intersection,
normal,
true,
(Shape*) &target
};
return RaycastResult::NoHit();
}
}
}

View File

@@ -1 +1,6 @@
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/Sphere.h>
namespace J3ML::Geometry
{
}

View File

@@ -0,0 +1,17 @@
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry/AABB.h>
namespace J3ML::Geometry
{
AABB Triangle::BoundingAABB() const {
AABB aabb;
aabb.minPoint = Vector3::Min(V0, V1, V2);
aabb.maxPoint = Vector3::Max(V0, V1, V2);
return aabb;
}
bool Triangle::Intersects(const AABB &aabb) const {
return aabb.Intersects(*this);
}
}

47
src/J3ML/J3ML.cpp Normal file
View File

@@ -0,0 +1,47 @@
#include <J3ML/J3ML.h>
namespace J3ML
{
Math::Rotation Math::operator ""_degrees(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_deg(long double rads) { return {Radians((float)rads)}; }
Math::Rotation Math::operator ""_radians(long double rads) { return {(float)rads}; }
Math::Rotation Math::operator ""_rad(long double rads) { return {(float)rads}; }
float Math::FastRSqrt(float x) {
return 1.f / FastSqrt(x);
}
float Math::RSqrt(float x) {
return 1.f / Sqrt(x);
}
float Math::Radians(float degrees) { return degrees * (Pi/180.f); }
float Math::Degrees(float radians) { return radians * (180.f/Pi); }
bool Math::EqualAbs(float a, float b, float epsilon) {
return std::abs(a - b) < epsilon;
}
Math::Rotation::Rotation() : valueInRadians(0) {}
Math::Rotation::Rotation(float value) : valueInRadians(value) {}
Math::Rotation Math::Rotation::operator+(const Math::Rotation &rhs) {
valueInRadians += rhs.valueInRadians;
}
float Math::Interp::SmoothStart(float t) {
assert(t >= 0.f && t <= 1.f);
return t*t;
}
int Math::BitTwiddling::CountBitsSet(u32 value) {
}
}

View File

@@ -1,4 +1,4 @@
#include <J3ML/LinearAlgebra.h>
#include "J3ML/LinearAlgebra.h"
#include <cassert>
namespace LinearAlgebra {

View File

@@ -18,4 +18,8 @@ namespace J3ML::LinearAlgebra {
float Matrix2x2::At(int x, int y) const {
return this->elems[x][y];
}
float &Matrix2x2::At(int x, int y) {
return this->elems[x][y];
}
}

View File

@@ -362,5 +362,69 @@ namespace J3ML::LinearAlgebra {
SetColumn(c2, v2);
}
Matrix3x3::Matrix3x3(const float *data) {
assert(data);
At(0, 0) = data[0];
At(0, 1) = data[1];
At(0, 2) = data[2];
At(1, 0) = data[4];
At(1, 1) = data[5];
At(1, 2) = data[6];
At(2, 0) = data[8];
At(2, 1) = data[9];
At(2, 2) = data[10];
}
Vector4 Matrix3x3::Mul(const Vector4 &rhs) const {
return {Mul(rhs.XYZ()), rhs.GetW()};
}
Vector3 Matrix3x3::Mul(const Vector3 &rhs) const {
return *this * rhs;
}
Vector2 Matrix3x3::Mul(const Vector2 &rhs) const {
return *this * rhs;
}
Matrix4x4 Matrix3x3::Mul(const Matrix4x4 &rhs) const {
return *this * rhs;
}
Matrix3x3 Matrix3x3::Mul(const Matrix3x3 &rhs) const {
return *this * rhs;
}
bool Matrix3x3::IsRowOrthogonal(float epsilon) const
{
return GetRow(0).IsPerpendicular(GetRow(1), epsilon)
&& GetRow(0).IsPerpendicular(GetRow(2), epsilon)
&& GetRow(1).IsPerpendicular(GetRow(2), epsilon);
}
bool Matrix3x3::IsColOrthogonal(float epsilon) const
{
return GetColumn(0).IsPerpendicular(GetColumn(1), epsilon)
&& GetColumn(0).IsPerpendicular(GetColumn(2), epsilon)
&& GetColumn(1).IsPerpendicular(GetColumn(2), epsilon);
}
bool Matrix3x3::HasUniformScale(float epsilon) const {
Vector3 scale = ExtractScale();
return Math::EqualAbs(scale.x, scale.y, epsilon) && Math::EqualAbs(scale.x, scale.z, epsilon);
}
Vector3 Matrix3x3::GetRow3(int index) const {
return GetRow(index);
}
Vector3 Matrix3x3::GetColumn3(int index) const {
return GetColumn(index);
}
}

View File

@@ -2,7 +2,10 @@
#include <J3ML/LinearAlgebra/Vector4.h>
namespace J3ML::LinearAlgebra {
const Matrix4x4 Matrix4x4::Zero = Matrix4x4(0);
const Matrix4x4 Matrix4x4::Zero = Matrix4x4(0.f);
const Matrix4x4 Matrix4x4::Identity = Matrix4x4({1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1});
const Matrix4x4 Matrix4x4::NaN = Matrix4x4(NAN);
@@ -420,6 +423,16 @@ namespace J3ML::LinearAlgebra {
return GetColumn3(3);
}
Matrix4x4 Matrix4x4::Scale(const Vector3& scale)
{
auto mat = *this;
mat.At(3, 0) *= scale.x;
mat.At(3, 1) *= scale.y;
mat.At(3, 2) *= scale.z;
return mat;
}
Matrix4x4
Matrix4x4::LookAt(const Vector3 &localFwd, const Vector3 &targetDir, const Vector3 &localUp, const Vector3 &worldUp) {
Matrix4x4 m;
@@ -560,4 +573,65 @@ namespace J3ML::LinearAlgebra {
return {p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33};
}
Matrix4x4::Matrix4x4(const float *data) {
assert(data);
At(0, 0) = data[0];
At(0, 1) = data[1];
At(0, 2) = data[2];
At(0, 3) = data[3];
At(1, 0) = data[4];
At(1, 1) = data[5];
At(1, 2) = data[6];
At(1, 3) = data[7];
At(2, 0) = data[8];
At(2, 1) = data[9];
At(2, 2) = data[10];
At(2, 3) = data[11];
At(3, 0) = data[12];
At(3, 1) = data[13];
At(3, 2) = data[14];
At(3, 3) = data[15];
}
bool Matrix4x4::ContainsProjection(float epsilon) const {
return GetRow(3).Equals(0.f, 0.f, 0.f, 1.f, epsilon) == false;
}
Vector4 Matrix4x4::Mul(const Vector4 &rhs) const {
return *this * rhs;
}
Vector3 Matrix4x4::Mul(const Vector3 &rhs) const {
return *this * rhs;
}
Vector2 Matrix4x4::Mul(const Vector2 &rhs) const {
return *this * rhs;
}
Vector4 Matrix4x4::operator[](int row) const {
return GetRow(row);
}
bool Matrix4x4::HasUniformScale(float epsilon) const {
Vector3 scale = ExtractScale();
return Math::EqualAbs(scale.x, scale.y, epsilon) && Math::EqualAbs(scale.x, scale.z, epsilon);
}
Vector3 Matrix4x4::ExtractScale() const {
return {GetColumn3(0).Length(), GetColumn3(1).Length(), GetColumn3(2).Length()};
}
bool Matrix4x4::IsColOrthogonal(float epsilon) const {
return IsColOrthogonal3(epsilon);
}
bool Matrix4x4::IsRowOrthogonal(float epsilon) const {
return IsRowOrthogonal3(epsilon);
}
}

View File

@@ -47,7 +47,18 @@ namespace J3ML::LinearAlgebra {
void Quaternion::SetFromAxisAngle(const Vector3 &axis, float angle) {
float sinz, cosz;
sinz = std::sin(angle*0.5f);
cosz = std::cos(angle*0.5f);
x = axis.x * sinz;
y = axis.y * sinz;
z = axis.z * sinz;
w = cosz;
}
void Quaternion::SetFromAxisAngle(const Vector4 &axis, float angle)
{
SetFromAxisAngle(Vector3(axis.x, axis.y, axis.z), angle);
}
Quaternion Quaternion::operator*(float scalar) const {
@@ -172,4 +183,22 @@ namespace J3ML::LinearAlgebra {
Matrix4x4 Quaternion::ToMatrix4x4(const Vector3 &translation) const {
return {*this, translation};
}
float Quaternion::GetAngle() const {
return std::acos(w) * 2.f;
}
Vector3 Quaternion::GetAxis() const {
float rcpSinAngle = 1 - (std::sqrt(1 - w * w));
return Vector3(x, y, z) * rcpSinAngle;
}
Quaternion::Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion::Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
}

View File

@@ -17,17 +17,12 @@ namespace J3ML::LinearAlgebra {
float Vector2::operator[](std::size_t index) const
{
assert(index < 2);
if (index == 0) return x;
if (index == 1) return y;
return 0;
return At(index);
}
float &Vector2::operator[](std::size_t index)
{
assert(index < 2);
if (index == 0) return x;
if (index == 1) return y;
return At(index);
}
bool Vector2::IsWithinMarginOfError(const Vector2& rhs, float margin) const
@@ -166,6 +161,7 @@ namespace J3ML::LinearAlgebra {
const Vector2 Vector2::Left = {-1, 0};
const Vector2 Vector2::Right = {1, 0};
const Vector2 Vector2::NaN = {NAN, NAN};
const Vector2 Vector2::Infinity = {INFINITY, INFINITY};
float Vector2::GetX() const { return x; }
@@ -263,4 +259,78 @@ namespace J3ML::LinearAlgebra {
}
Vector2 Vector2::Abs() const { return {std::abs(x), std::abs(y)};}
float *Vector2::ptr() {
return &x;
}
const float *Vector2::ptr() const { return &x;}
const float Vector2::At(std::size_t index) const {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
float &Vector2::At(std::size_t index) {
assert(index >= 0);
assert(index < Dimensions);
return ptr()[index];
}
Vector2 &Vector2::operator/=(float scalar) {
x /= scalar;
y /= scalar;
return *this;
}
Vector2 &Vector2::operator*=(float scalar) {
x *= scalar;
y *= scalar;
return *this;
}
Vector2 &Vector2::operator-=(const Vector2 &rhs) // Subtracts a vector from this vector, in-place
{
x -= rhs.x;
y -= rhs.y;
return *this;
}
Vector2 &Vector2::operator+=(const Vector2 &rhs) // Adds a vector to this vector, in-place.
{
x += rhs.x;
y += rhs.y;
return *this;
}
Vector2 &Vector2::operator=(const Vector2 &rhs) {
x = rhs.x;
y = rhs.y;
return *this;
}
Vector2::Vector2(const float *data) {
assert(data);
x = data[0];
y = data[1];
}
Vector2::Vector2(float scalar) {
x = scalar;
y = scalar;
}
float Vector2::DistanceSq(const Vector2 &to) const {
return (*this-to).LengthSquared();
}
float Vector2::DistanceSq(const Vector2 &from, const Vector2 &to) {
return (from-to).LengthSquared();
}
}

View File

@@ -5,8 +5,6 @@
namespace J3ML::LinearAlgebra {
const Vector3 Vector3::Zero = {0,0,0};
const Vector3 Vector3::Up = {0, -1, 0};
const Vector3 Vector3::Down = {0, 1, 0};
@@ -105,6 +103,8 @@ namespace J3ML::LinearAlgebra {
return this->IsWithinMarginOfError(rhs) == false;
}
Vector3 Vector3::Min(const Vector3& min) const
{
return {
@@ -322,5 +322,122 @@ namespace J3ML::LinearAlgebra {
return {std::abs(x), std::abs(y), std::abs(z)};
}
float *Vector3::ptr() {
return &x;
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
}
void Vector3::Orthonormalize(Vector3 &a, Vector3 &b, Vector3 &c) {
a = a.Normalize();
b = b - b.ProjectToNorm(a);
b = b.Normalize();
c = c - c.ProjectToNorm(a);
c = c - c.ProjectToNorm(b);
c = c.Normalize();
}
Vector3 Vector3::ProjectToNorm(const Vector3 &direction) const {
return direction * this->Dot(direction);
}
bool Vector3::IsFinite() const {
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
}
Vector3::Vector3(const float *data) {
x = data[0];
y = data[1];
z = data[2];
}
Vector3 &Vector3::operator+=(const Vector3 &rhs) {
x += rhs.x;
y += rhs.y;
z += rhs.z;
return *this;
}
Vector3 &Vector3::operator-=(const Vector3 &rhs) {
x -= rhs.x;
y -= rhs.y;
z -= rhs.z;
return *this;
}
Vector3 &Vector3::operator*=(float scalar) {
x *= scalar;
y *= scalar;
z *= scalar;
return *this;
}
Vector3 &Vector3::operator/=(float scalar) {
x /= scalar;
y /= scalar;
z /= scalar;
return *this;
}
float Vector3::MinElement() const {
return std::min(x, std::min(y, z));
}
bool Vector3::AreOrthonormal(const Vector3 &a, const Vector3 &b, float epsilon) {
return a.IsPerpendicular(b, epsilon) && a.IsNormalized(epsilon*epsilon) && b.IsNormalized(epsilon*epsilon);
}
Vector3 Vector3::Mul(const Vector3 &rhs) const {
return {
this->x * rhs.x,
this->y * rhs.y,
this->z * rhs.z
};
}
Vector3 Vector3::Div(const Vector3 &v) const {
return {
this->x/v.x,
this->y/v.y,
this->z/v.z
};
}
Vector3 Vector3::Abs(const Vector3 &rhs) {
return rhs.Abs();
}
bool Vector3::Equals(const Vector3 &rhs, float epsilon) const {
return std::abs(x - rhs.x) < epsilon &&
std::abs(y - rhs.y) < epsilon &&
std::abs(z - rhs.z) < epsilon;
}
bool Vector3::Equals(float _x, float _y, float _z, float epsilon) const {
return std::abs(x - _x) < epsilon &&
std::abs(y - _y) < epsilon &&
std::abs(z - _z) < epsilon;
}
Vector3 Vector3::Min(const Vector3 &a, const Vector3 &b, const Vector3 &c) {
return {
std::min(a.x, std::min(b.x, c.x)),
std::min(a.y, std::min(b.y, c.y)),
std::min(a.z, std::min(b.z, c.z))
};
}
Vector3 Vector3::Max(const Vector3 &a, const Vector3 &b, const Vector3 &c) {
return {
std::max(a.x, std::max(b.x, c.x)),
std::max(a.y, std::max(b.y, c.y)),
std::max(a.z, std::max(b.z, c.z))
};
}
}

View File

@@ -150,6 +150,20 @@ Vector4 Vector4::operator-(const Vector4& rhs) const
return *this;
}
bool Vector4::Equals(const Vector4 &rhs, float epsilon) const {
return std::abs(x - rhs.x) < epsilon &&
std::abs(y - rhs.y) < epsilon &&
std::abs(z - rhs.z) < epsilon &&
std::abs(w - rhs.w) < epsilon;
}
bool Vector4::Equals(float _x, float _y, float _z, float _w, float epsilon) const {
return std::abs(x - _x) < epsilon &&
std::abs(y - _y) < epsilon &&
std::abs(z - _z) < epsilon &&
std::abs(w - _w) < epsilon;
}
}
#pragma endregion