Compare commits
13 Commits
Prerelease
...
Prerelease
Author | SHA1 | Date | |
---|---|---|---|
792f7801bb | |||
12bf687f33 | |||
432fa32f57 | |||
0597b4c937 | |||
69ca7c5c05 | |||
c858d3b889 | |||
35fded8ec0 | |||
6b78a0b731 | |||
ea61b5ea51 | |||
a32719cdeb | |||
19b5630deb | |||
5080305965 | |||
40e69d5c4f |
@@ -37,21 +37,75 @@ namespace Geometry
|
||||
|
||||
class AABB
|
||||
{
|
||||
static AABB FromCenterAndSize(const Vector3 FromSize);
|
||||
float MinX();
|
||||
// Returns the smallest sphere that contains this AABB.
|
||||
// This function computes the minimal volume sphere that contains all the points inside this AABB
|
||||
Sphere MinimalEnclosingSphere() const;
|
||||
// Returns the largest sphere that can fit inside this AABB
|
||||
public:
|
||||
Vector3 minPoint;
|
||||
Vector3 maxPoint;
|
||||
|
||||
static int NumFaces() { return 6; }
|
||||
static int NumEdges() { return 12;}
|
||||
static int NumVertices() { return 8;}
|
||||
|
||||
static AABB FromCenterAndSize(const Vector3& center, const Vector3& size)
|
||||
{
|
||||
Vector3 halfSize = size * 0.5f;
|
||||
return {center - halfSize, center + halfSize};
|
||||
}
|
||||
float MinX() const { return minPoint.x; }
|
||||
float MinY() const { return minPoint.y; }
|
||||
float MinZ() const { return minPoint.z; }
|
||||
|
||||
float MaxX() const { return maxPoint.x; }
|
||||
float MaxY() const { return maxPoint.y; }
|
||||
float MaxZ() const { return maxPoint.z; }
|
||||
|
||||
|
||||
/// Returns the smallest sphere that contains this AABB.
|
||||
/// This function computes the minimal volume sphere that contains all the points inside this AABB
|
||||
Sphere MinimalEnclosingSphere() const
|
||||
{
|
||||
return Sphere(Centroid(), Size().Length()*0.5f);
|
||||
}
|
||||
|
||||
Vector3 HalfSize() const {
|
||||
return this->Size()/2.f;
|
||||
}
|
||||
|
||||
// Returns the largest sphere that can fit inside this AABB
|
||||
// This function computes the largest sphere that can fit inside this AABB.
|
||||
Sphere MaximalContainedSphere() const;
|
||||
Vector3 GetCentroid() const;
|
||||
Sphere MaximalContainedSphere() const
|
||||
{
|
||||
Vector3 halfSize = HalfSize();
|
||||
return Sphere(Centroid(), std::min(halfSize.x, std::min(halfSize.y, halfSize.z)));
|
||||
}
|
||||
bool IsFinite() const
|
||||
{
|
||||
return minPoint.IsFinite() && maxPoint.IsFinite();
|
||||
}
|
||||
Vector3 Centroid() const
|
||||
{
|
||||
return (minPoint+maxPoint) * 0.5f;
|
||||
}
|
||||
Vector3 Size() const
|
||||
{
|
||||
return this->maxPoint - this->minPoint;
|
||||
}
|
||||
// Quickly returns an arbitrary point inside this AABB
|
||||
Vector3 AnyPointFast() const;
|
||||
|
||||
Vector3 PointInside(float x, float y, float z) const;
|
||||
Vector3 PointInside(float x, float y, float z) const
|
||||
{
|
||||
Vector3 d = maxPoint - minPoint;
|
||||
return minPoint + d.Mul({x, y, z});
|
||||
}
|
||||
// Returns an edge of this AABB
|
||||
LineSegment Edge(int edgeIndex) const;
|
||||
LineSegment Edge(int edgeIndex) const
|
||||
{
|
||||
switch(edgeIndex)
|
||||
{
|
||||
default:
|
||||
case 0: return LineSegment(minPoint, {minPoint.x, minPoint.y, maxPoint.z});
|
||||
}
|
||||
}
|
||||
Vector3 CornerPoint(int cornerIndex);
|
||||
Vector3 ExtremePoint(const Vector3& direction) const;
|
||||
Vector3 ExtremePoint(const Vector3& direction, float projectionDistance);
|
||||
@@ -61,7 +115,6 @@ namespace Geometry
|
||||
Vector3 FaceNormal(int faceIndex) const;
|
||||
Plane FacePlane(int faceIndex);
|
||||
static AABB MinimalEnclosingAABB(const Vector3* pointArray, int numPoints);
|
||||
Vector3 GetSize();
|
||||
Vector3 GetVolume();
|
||||
float GetVolumeCubed();
|
||||
float GetSurfaceArea();
|
||||
|
@@ -13,10 +13,10 @@ namespace Geometry
|
||||
// Specifies the radius of this capsule
|
||||
float r;
|
||||
|
||||
Capsule() {}
|
||||
Capsule();
|
||||
Capsule(const LineSegment& endPoints, float radius);
|
||||
Capsule(const Vector3& bottomPt, const Vector3& topPt, float radius);
|
||||
bool IsDegenerate()const;
|
||||
bool IsDegenerate() const;
|
||||
float Height() const;
|
||||
float Diameter() const;
|
||||
Vector3 Bottom() const;
|
||||
|
@@ -7,6 +7,9 @@ namespace Geometry
|
||||
using LinearAlgebra::Vector3;
|
||||
class LineSegment
|
||||
{
|
||||
public:
|
||||
LineSegment();
|
||||
LineSegment(const Vector3& a, const Vector3& b);
|
||||
Vector3 A;
|
||||
Vector3 B;
|
||||
};
|
||||
|
@@ -1,9 +1,15 @@
|
||||
#pragma once
|
||||
|
||||
#include "J3ML/Geometry.h"
|
||||
|
||||
namespace Geometry
|
||||
{
|
||||
class Sphere
|
||||
{
|
||||
public:
|
||||
Sphere(const Vector3& pos, float radius)
|
||||
{
|
||||
|
||||
}
|
||||
};
|
||||
}
|
@@ -44,6 +44,7 @@ namespace LinearAlgebra {
|
||||
Vector3 GetRow(int index) const;
|
||||
Vector3 GetColumn(int index) const;
|
||||
|
||||
float &At(int row, int col);
|
||||
float At(int x, int y) const;
|
||||
|
||||
void SetRotatePart(const Vector3& a, float angle);
|
||||
@@ -73,10 +74,7 @@ namespace LinearAlgebra {
|
||||
|
||||
static Matrix3x3 LookAt(const Vector3& forward, const Vector3& target, const Vector3& localUp, const Vector3& worldUp);
|
||||
|
||||
static Matrix3x3 FromQuat(const Quaternion& orientation)
|
||||
{
|
||||
return Matrix3x3(orientation);
|
||||
}
|
||||
static Matrix3x3 FromQuat(const Quaternion& orientation);
|
||||
|
||||
Quaternion ToQuat() const;
|
||||
|
||||
@@ -86,14 +84,8 @@ namespace LinearAlgebra {
|
||||
// Transforming a vector v using this matrix computes the vector
|
||||
// v' == M * v == R*S*v == (R * (S * v)) which means the scale operation
|
||||
// is applied to the vector first, followed by rotation, and finally translation
|
||||
static Matrix3x3 FromRS(const Quaternion& rotate, const Vector3& scale)
|
||||
{
|
||||
return Matrix3x3(rotate) * Matrix3x3::Scale(scale);
|
||||
}
|
||||
static Matrix3x3 FromRS(const Matrix3x3 &rotate, const Vector3& scale)
|
||||
{
|
||||
return rotate * Matrix3x3::Scale(scale);
|
||||
}
|
||||
static Matrix3x3 FromRS(const Quaternion& rotate, const Vector3& scale);
|
||||
static Matrix3x3 FromRS(const Matrix3x3 &rotate, const Vector3& scale);
|
||||
|
||||
|
||||
/// Creates a new transformation matrix that scales by the given factors.
|
||||
@@ -132,6 +124,10 @@ namespace LinearAlgebra {
|
||||
Vector2 Transform(const Vector2& rhs) const;
|
||||
Vector3 Transform(const Vector3& rhs) const;
|
||||
|
||||
Vector3 operator[](int row) const
|
||||
{
|
||||
return Vector3{elems[row][0], elems[row][1], elems[row][2]};
|
||||
}
|
||||
|
||||
Vector3 operator * (const Vector3& rhs) const;
|
||||
Matrix3x3 operator * (const Matrix3x3& rhs) const;
|
||||
|
@@ -12,7 +12,7 @@ namespace LinearAlgebra {
|
||||
* The elements of this matrix are
|
||||
* m_00, m_01, m_02, m_03
|
||||
* m_10, m_11, m_12, m_13
|
||||
* m_20, m_21, m_22, am_23,
|
||||
* m_20, m_21, m_22, m_23,
|
||||
* m_30, m_31, m_32, m_33
|
||||
*
|
||||
* The element m_yx is the value on the row y and column x.
|
||||
@@ -20,6 +20,7 @@ namespace LinearAlgebra {
|
||||
*/
|
||||
class Matrix4x4 {
|
||||
public:
|
||||
// TODO: Implement assertions to ensure matrix bounds are not violated!
|
||||
enum { Rows = 4 };
|
||||
enum { Cols = 4 };
|
||||
|
||||
@@ -43,9 +44,9 @@ namespace LinearAlgebra {
|
||||
/// The elements are specified in row-major format, i.e. the first row first followed by the second and third row.
|
||||
/// E.g. The element _10 denotes the scalar at second (index 1) row, first (index 0) column.
|
||||
Matrix4x4(float m00, float m01, float m02, float m03,
|
||||
float m10, float m11, float m12, float m13,
|
||||
float m20, float m21, float m22, float m23,
|
||||
float m30, float m31, float m32, float m33);
|
||||
float m10, float m11, float m12, float m13,
|
||||
float m20, float m21, float m22, float m23,
|
||||
float m30, float m31, float m32, float m33);
|
||||
/// Constructs the matrix by explicitly specifying the four column vectors.
|
||||
/** @param col0 The first column. If this matrix represents a change-of-basis transformation, this parameter is the world-space
|
||||
direction of the local X axis.
|
||||
@@ -57,37 +58,92 @@ namespace LinearAlgebra {
|
||||
position of the local space pivot. */
|
||||
Matrix4x4(const Vector4& r1, const Vector4& r2, const Vector4& r3, const Vector4& r4);
|
||||
|
||||
|
||||
explicit Matrix4x4(const Quaternion& orientation);
|
||||
|
||||
/// Constructs this float4x4 from the given quaternion and translation.
|
||||
/// Logically, the translation occurs after the rotation has been performed.
|
||||
Matrix4x4(const Quaternion& orientation, const Vector3 &translation);
|
||||
|
||||
/// Creates a LookAt matrix from a look-at direction vector.
|
||||
/** A LookAt matrix is a rotation matrix that orients an object to face towards a specified target direction.
|
||||
@param localForward Specifies the forward direction in the local space of the object. This is the direction
|
||||
the model is facing at in its own local/object space, often +X (1,0,0), +Y (0,1,0) or +Z (0,0,1). The
|
||||
vector to pass in here depends on the conventions you or your modeling software is using, and it is best
|
||||
pick one convention for all your objects, and be consistent.
|
||||
This input parameter must be a normalized vector.
|
||||
@param targetDirection Specifies the desired world space direction the object should look at. This function
|
||||
will compute a rotation matrix which will rotate the localForward vector to orient towards this targetDirection
|
||||
vector. This input parameter must be a normalized vector.
|
||||
@param localUp Specifies the up direction in the local space of the object. This is the up direction the model
|
||||
was authored in, often +Y (0,1,0) or +Z (0,0,1). The vector to pass in here depends on the conventions you
|
||||
or your modeling software is using, and it is best to pick one convention for all your objects, and be
|
||||
consistent. This input parameter must be a normalized vector. This vector must be perpendicular to the
|
||||
vector localForward, i.e. localForward.Dot(localUp) == 0.
|
||||
@param worldUp Specifies the global up direction of the scene in world space. Simply rotating one vector to
|
||||
coincide with another (localForward->targetDirection) would cause the up direction of the resulting
|
||||
orientation to drift (e.g. the model could be looking at its target its head slanted sideways). To keep
|
||||
the up direction straight, this function orients the localUp direction of the model to point towards the
|
||||
specified worldUp direction (as closely as possible). The worldUp and targetDirection vectors cannot be
|
||||
collinear, but they do not need to be perpendicular either.
|
||||
@return A matrix that maps the given local space forward direction vector to point towards the given target
|
||||
direction, and the given local up direction towards the given target world up direction. The returned
|
||||
matrix M is orthonormal with a determinant of +1. For the matrix M it holds that
|
||||
M * localForward = targetDirection, and M * localUp lies in the plane spanned by the vectors targetDirection
|
||||
and worldUp.
|
||||
@note The position of (the translation performed by) the resulting matrix will be set to (0,0,0), i.e. the object
|
||||
will be placed to origin. Call SetTranslatePart() on the resulting matrix to set the position of the model.
|
||||
@see RotateFromTo(). */
|
||||
static Matrix4x4 LookAt(const Vector3& localFwd, const Vector3& targetDir, const Vector3& localUp, const Vector3& worldUp);
|
||||
|
||||
/// Returns the translation part.
|
||||
/** The translation part is stored in the fourth column of this matrix.
|
||||
This is equivalent to decomposing this matrix in the form M = T * M', i.e. this translation is applied last,
|
||||
after applying rotation and scale. If this matrix represents a local->world space transformation for an object,
|
||||
then this gives the world space position of the object.
|
||||
@note This function assumes that this matrix does not contain projection (the fourth row of this matrix is [0 0 0 1]). */
|
||||
Vector3 GetTranslatePart() const;
|
||||
Matrix3x3 GetRotatePart() const
|
||||
{
|
||||
return Matrix3x3 {
|
||||
At(0, 0), At(0, 1), At(0, 2),
|
||||
At(1, 0), At(1, 1), At(1, 2),
|
||||
At(2, 0), At(2, 1), At(2, 2)
|
||||
};
|
||||
}
|
||||
/// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation).
|
||||
Matrix3x3 GetRotatePart() const;
|
||||
void SetTranslatePart(float translateX, float translateY, float translateZ);
|
||||
void SetTranslatePart(const Vector3& offset);
|
||||
void SetRotatePart(const Quaternion& q);
|
||||
void SetRotatePart(const Matrix3x3& r);
|
||||
|
||||
void Set3x3Part(const Matrix3x3& r);
|
||||
|
||||
void SetRow(int row, const Vector3& rowVector, float m_r3);
|
||||
void SetRow(int row, const Vector4& rowVector);
|
||||
void SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3);
|
||||
|
||||
|
||||
Vector4 GetRow(int index) const;
|
||||
Vector4 GetColumn(int index) const;
|
||||
Vector3 GetRow3(int index) const;
|
||||
Vector3 GetColumn3(int index) const;
|
||||
|
||||
float &At(int row, int col);
|
||||
float At(int x, int y) const;
|
||||
|
||||
template <typename T>
|
||||
void Swap(T &a, T &b)
|
||||
{
|
||||
T temp = std::move(a);
|
||||
a = std::move(b);
|
||||
b = std::move(temp);
|
||||
}
|
||||
|
||||
|
||||
void SwapColumns(int col1, int col2);
|
||||
|
||||
/// Swaps two rows.
|
||||
void SwapRows(int row1, int row2);
|
||||
/// Swapsthe xyz-parts of two rows element-by-element
|
||||
void SwapRows3(int row1, int row2);
|
||||
|
||||
void ScaleRow(int row, float scalar);
|
||||
void ScaleRow3(int row, float scalar);
|
||||
void ScaleColumn(int col, float scalar);
|
||||
void ScaleColumn3(int col, float scalar);
|
||||
/// Algorithm from Eric Lengyel's Mathematics for 3D Game Programming & Computer Graphics, 2nd Ed.
|
||||
void Pivot();
|
||||
|
||||
/// Tests if this matrix does not contain any NaNs or infs.
|
||||
/** @return Returns true if the entries of this float4x4 are all finite, and do not contain NaN or infs. */
|
||||
bool IsFinite() const;
|
||||
@@ -97,23 +153,52 @@ namespace LinearAlgebra {
|
||||
bool IsInvertible(float epsilon = 1e-3f) const;
|
||||
|
||||
Vector4 Diagonal() const;
|
||||
Vector4 WorldX() const;
|
||||
Vector4 WorldY() const;
|
||||
Vector4 WorldZ() const;
|
||||
Vector3 Diagonal3() const;
|
||||
/// Returns the local +X axis in world space.
|
||||
/// This is the same as transforming the vector (1,0,0) by this matrix.
|
||||
Vector3 WorldX() const;
|
||||
/// Returns the local +Y axis in world space.
|
||||
/// This is the same as transforming the vector (0,1,0) by this matrix.
|
||||
Vector3 WorldY() const;
|
||||
/// Returns the local +Z axis in world space.
|
||||
/// This is the same as transforming the vector (0,0,1) by this matrix.
|
||||
Vector3 WorldZ() const;
|
||||
|
||||
/// Accesses this structure as a float array.
|
||||
/// @return A pointer to the upper-left element. The data is contiguous in memory.
|
||||
/// ptr[0] gives the element [0][0], ptr[1] is [0][1], ptr[2] is [0][2].
|
||||
/// ptr[4] == [1][0], ptr[5] == [1][1], ..., and finally, ptr[15] == [3][3].
|
||||
float *ptr() { return &elems[0][0]; }
|
||||
const float *ptr() const { return &elems[0][0]; }
|
||||
|
||||
float Determinant3x3() const;
|
||||
/// Computes the determinant of this matrix.
|
||||
// If the determinant is nonzero, this matrix is invertible.
|
||||
float Determinant() const;
|
||||
|
||||
#define SKIPNUM(val, skip) (val >= skip ? (val+1) : val)
|
||||
|
||||
float Minor(int i, int j) const;
|
||||
|
||||
Matrix4x4 Inverse() const;
|
||||
|
||||
Matrix4x4 Transpose() const;
|
||||
|
||||
Vector2 Transform(float tx, float ty) const;
|
||||
Vector2 Transform(const Vector2& rhs) const;
|
||||
|
||||
|
||||
Vector3 Transform(float tx, float ty, float tz) const;
|
||||
Vector3 Transform(const Vector3& rhs) const;
|
||||
|
||||
Vector4 Transform(float tx, float ty, float tz, float tw) const;
|
||||
Vector4 Transform(const Vector4& rhs) const;
|
||||
|
||||
|
||||
Matrix4x4 Translate(const Vector3& rhs) const;
|
||||
static Matrix4x4 FromTranslation(const Vector3& rhs);
|
||||
|
||||
|
||||
static Matrix4x4 D3DOrthoProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
|
||||
static Matrix4x4 D3DOrthoProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
|
||||
static Matrix4x4 D3DPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
|
||||
@@ -124,12 +209,6 @@ namespace LinearAlgebra {
|
||||
static Matrix4x4 OpenGLPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
|
||||
static Matrix4x4 OpenGLPerspProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
|
||||
|
||||
Vector3 GetTranslationComponent() const;
|
||||
Matrix3x3 GetRotationComponent() const;
|
||||
|
||||
Vector4 GetRow() const;
|
||||
Vector4 GetColumn() const;
|
||||
|
||||
Vector4 operator[](int row);
|
||||
|
||||
Matrix4x4 operator-() const;
|
||||
@@ -139,9 +218,11 @@ namespace LinearAlgebra {
|
||||
Matrix4x4 operator *(float scalar) const;
|
||||
Matrix4x4 operator /(float scalar) const;
|
||||
|
||||
Vector2 operator * (const Vector2& rhs) const { return this->Transform(rhs);}
|
||||
Vector3 operator * (const Vector3& rhs) const { return this->Transform(rhs);}
|
||||
Vector4 operator * (const Vector4& rhs) const { return this->Transform(rhs);}
|
||||
|
||||
|
||||
Vector2 operator * (const Vector2& rhs) const;
|
||||
Vector3 operator * (const Vector3& rhs) const;
|
||||
Vector4 operator * (const Vector4& rhs) const;
|
||||
|
||||
Matrix4x4 operator * (const Matrix3x3 &rhs) const;
|
||||
|
||||
@@ -149,23 +230,13 @@ namespace LinearAlgebra {
|
||||
|
||||
Matrix4x4 operator * (const Matrix4x4& rhs) const;
|
||||
|
||||
Matrix4x4 &operator = (const Matrix3x3& rhs)
|
||||
{
|
||||
SetRotatePart(rhs);
|
||||
SetTranslatePart(0,0,0);
|
||||
SetRow(3, 0, 0, 0, 1);
|
||||
return *this;
|
||||
}
|
||||
Matrix4x4 &operator = (const Quaternion& rhs)
|
||||
{
|
||||
*this = rhs.ToMatrix4x4();
|
||||
return *this;
|
||||
}
|
||||
Matrix4x4 &operator = (const Matrix3x3& rhs);
|
||||
Matrix4x4 &operator = (const Quaternion& rhs);
|
||||
Matrix4x4 &operator = (const Matrix4x4& rhs) = default;
|
||||
|
||||
protected:
|
||||
float elems[4][4];
|
||||
|
||||
void SetMatrixRotatePart(Matrix4x4 &m, const Quaternion &q);
|
||||
|
||||
};
|
||||
}
|
@@ -7,6 +7,8 @@ namespace LinearAlgebra {
|
||||
using namespace J3ML;
|
||||
|
||||
|
||||
|
||||
|
||||
/// A 2D (x, y) ordered pair.
|
||||
class Vector2 {
|
||||
public:
|
||||
@@ -121,6 +123,10 @@ namespace LinearAlgebra {
|
||||
/// Multiplies this vector by a vector, element-wise
|
||||
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
|
||||
/// but this function is provided here for syntactical convenience.
|
||||
Vector2 operator *(const Vector2& rhs) const
|
||||
{
|
||||
|
||||
}
|
||||
Vector2 Mul(const Vector2& v) const;
|
||||
|
||||
/// Divides this vector by a scalar.
|
||||
@@ -147,4 +153,9 @@ namespace LinearAlgebra {
|
||||
float y = 0;
|
||||
|
||||
};
|
||||
|
||||
static Vector2 operator*(float lhs, const Vector2 &rhs)
|
||||
{
|
||||
return rhs * lhs;
|
||||
}
|
||||
}
|
@@ -38,7 +38,7 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//Returns the DirectionVector for a given angle.
|
||||
/// Returns the DirectionVector for a given angle.
|
||||
static Vector3 Direction(const Vector3 &rhs) ;
|
||||
|
||||
|
||||
@@ -78,6 +78,11 @@ public:
|
||||
bool operator == (const Vector3& rhs) const;
|
||||
bool operator != (const Vector3& rhs) const;
|
||||
|
||||
bool IsFinite() const
|
||||
{
|
||||
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
|
||||
}
|
||||
|
||||
Vector3 Min(const Vector3& min) const;
|
||||
static Vector3 Min(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
@@ -87,7 +92,7 @@ public:
|
||||
Vector3 Clamp(const Vector3& min, const Vector3& max) const;
|
||||
static Vector3 Clamp(const Vector3& min, const Vector3& input, const Vector3& max);
|
||||
|
||||
// Returns the magnitude between the two vectors.
|
||||
/// Returns the magnitude between the two vectors.
|
||||
float Distance(const Vector3& to) const;
|
||||
static float Distance(const Vector3& from, const Vector3& to);
|
||||
|
||||
@@ -97,33 +102,33 @@ public:
|
||||
float LengthSquared() const;
|
||||
static float LengthSquared(const Vector3& of);
|
||||
|
||||
// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
|
||||
/// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
|
||||
float Magnitude() const;
|
||||
static float Magnitude(const Vector3& of);
|
||||
|
||||
// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
|
||||
// For normalized vectors, dot returns 1 if they point in exactly the same direction,
|
||||
// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
|
||||
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
|
||||
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
|
||||
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
|
||||
float Dot(const Vector3& rhs) const;
|
||||
static float Dot(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
// Projects one vector onto another and returns the result. (IDK)
|
||||
/// Projects one vector onto another and returns the result. (IDK)
|
||||
Vector3 Project(const Vector3& rhs) const;
|
||||
static Vector3 Project(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
|
||||
// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
|
||||
/// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
|
||||
/// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
|
||||
Vector3 Cross(const Vector3& rhs) const;
|
||||
static Vector3 Cross(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
|
||||
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
|
||||
Vector3 Normalize() const;
|
||||
static Vector3 Normalize(const Vector3& targ);
|
||||
|
||||
// Linearly interpolates between two points.
|
||||
// Interpolates between the points and b by the interpolant t.
|
||||
// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
|
||||
// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
|
||||
/// Linearly interpolates between two points.
|
||||
/// Interpolates between the points and b by the interpolant t.
|
||||
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
|
||||
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
|
||||
Vector3 Lerp(const Vector3& goal, float alpha) const;
|
||||
static Vector3 Lerp(const Vector3& lhs, const Vector3& rhs, float alpha);
|
||||
|
||||
@@ -136,24 +141,38 @@ public:
|
||||
Vector3 Add(const Vector3& rhs) const;
|
||||
static Vector3 Add(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
// Subtracts two vectors
|
||||
/// Subtracts two vectors
|
||||
Vector3 operator-(const Vector3& rhs) const;
|
||||
Vector3 Sub(const Vector3& rhs) const;
|
||||
static Vector3 Sub(const Vector3& lhs, const Vector3& rhs);
|
||||
|
||||
// Multiplies this vector by a scalar value
|
||||
/// Multiplies this vector by a scalar value
|
||||
Vector3 operator*(float rhs) const;
|
||||
Vector3 Mul(float scalar) const;
|
||||
static Vector3 Mul(const Vector3& lhs, float rhs);
|
||||
|
||||
// Divides this vector by a scalar
|
||||
/// Multiplies this vector by a vector, element-wise
|
||||
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
|
||||
/// but this function is provided here for syntactical convenience.
|
||||
Vector3 Mul(const Vector3& rhs) const
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/// Divides this vector by a scalar
|
||||
Vector3 operator/(float rhs) const;
|
||||
Vector3 Div(float scalar) const;
|
||||
static Vector3 Div(const Vector3& lhs, float rhs);
|
||||
|
||||
// Unary + operator
|
||||
|
||||
/// Divides this vector by a vector, element-wise
|
||||
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
|
||||
/// but this function is provided here for syntactical convenience
|
||||
Vector2 Div(const Vector2& v) const;
|
||||
|
||||
/// Unary + operator
|
||||
Vector3 operator+() const; // TODO: Implement
|
||||
// Unary - operator (Negation)
|
||||
/// Unary - operator (Negation)
|
||||
Vector3 operator-() const;
|
||||
public:
|
||||
float x = 0;
|
||||
|
@@ -81,6 +81,8 @@ namespace LinearAlgebra {
|
||||
|
||||
Vector4 operator+() const; // Unary + Operator
|
||||
Vector4 operator-() const; // Unary - Operator (Negation)
|
||||
|
||||
|
||||
public:
|
||||
#if MUTABLE
|
||||
float x;
|
||||
|
@@ -3,4 +3,5 @@
|
||||
namespace Geometry
|
||||
{
|
||||
|
||||
Capsule::Capsule() : l() {}
|
||||
}
|
@@ -2,4 +2,10 @@
|
||||
|
||||
namespace Geometry {
|
||||
|
||||
LineSegment::LineSegment(const Vector3 &a, const Vector3 &b) : A(a), B(b)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
LineSegment::LineSegment() {}
|
||||
}
|
@@ -296,5 +296,33 @@ namespace LinearAlgebra {
|
||||
};
|
||||
}
|
||||
|
||||
float &Matrix3x3::At(int row, int col) {
|
||||
return elems[row][col];
|
||||
}
|
||||
|
||||
Vector3 Matrix3x3::WorldZ() const {
|
||||
return GetColumn(2);
|
||||
}
|
||||
|
||||
Vector3 Matrix3x3::WorldY() const {
|
||||
return GetColumn(1);
|
||||
}
|
||||
|
||||
Vector3 Matrix3x3::WorldX() const {
|
||||
return GetColumn(0);
|
||||
}
|
||||
|
||||
Matrix3x3 Matrix3x3::FromRS(const Quaternion &rotate, const Vector3 &scale) {
|
||||
return Matrix3x3(rotate) * Matrix3x3::Scale(scale);
|
||||
}
|
||||
|
||||
Matrix3x3 Matrix3x3::FromRS(const Matrix3x3 &rotate, const Vector3 &scale) {
|
||||
return rotate * Matrix3x3::Scale(scale);
|
||||
}
|
||||
|
||||
Matrix3x3 Matrix3x3::FromQuat(const Quaternion &orientation) {
|
||||
return Matrix3x3(orientation);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@@ -90,11 +90,8 @@ namespace LinearAlgebra {
|
||||
elems[2][3] = offset.z;
|
||||
}
|
||||
|
||||
void Matrix4x4::SetRotatePart(const Quaternion &q) {
|
||||
SetMatrixRotatePart(*this, q);
|
||||
}
|
||||
|
||||
void Matrix4x4::SetMatrixRotatePart(Matrix4x4 &m, const Quaternion& q)
|
||||
void Matrix4x4::SetRotatePart(const Quaternion& q)
|
||||
{
|
||||
// See e.g. http://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf .
|
||||
const float x = q.x;
|
||||
@@ -106,6 +103,15 @@ namespace LinearAlgebra {
|
||||
elems[2][0] = 2*(x*z - y*w); elems[2][1] = 2*(y*z + x*w); elems[2][2] = 1 - 2*(x*x + y*y);
|
||||
}
|
||||
|
||||
void Matrix4x4::Set3x3Part(const Matrix3x3& r)
|
||||
{
|
||||
At(0, 0) = r[0][0]; At(0, 1) = r[0][1]; At(0, 2) = r[0][2];
|
||||
At(1, 0) = r[1][0]; At(1, 1) = r[1][1]; At(1, 2) = r[1][2];
|
||||
At(2, 0) = r[2][0]; At(2, 1) = r[2][1]; At(2, 2) = r[2][2];
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Matrix4x4::SetRow(int row, const Vector3 &rowVector, float m_r3) {
|
||||
SetRow(row, rowVector.x, rowVector.y, rowVector.z, m_r3);
|
||||
}
|
||||
@@ -224,4 +230,288 @@ namespace LinearAlgebra {
|
||||
}
|
||||
|
||||
Matrix4x4 Matrix4x4::operator+() const { return *this; }
|
||||
|
||||
Matrix4x4 Matrix4x4::FromTranslation(const Vector3 &rhs) {
|
||||
return Matrix4x4(1.f, 0, 0, rhs.x,
|
||||
0, 1.f, 0, rhs.y,
|
||||
0, 0, 1.f, rhs.z,
|
||||
0, 0, 0, 1.f);
|
||||
}
|
||||
|
||||
Matrix4x4 Matrix4x4::Translate(const Vector3 &rhs) const {
|
||||
return *this * FromTranslation(rhs);
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::Transform(const Vector3 &rhs) const {
|
||||
return Transform(rhs.x, rhs.y, rhs.z);
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::Transform(float tx, float ty, float tz) const {
|
||||
return Vector3(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) * tz + At(0, 3),
|
||||
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) * tz + At(1, 3),
|
||||
At(2, 0) * tx + At(2, 1) * ty + At(2, 2) * tz + At(2, 3));
|
||||
}
|
||||
|
||||
Vector2 Matrix4x4::Transform(float tx, float ty) const {
|
||||
return Vector2(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) + At(0, 3),
|
||||
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) + At(1, 3));
|
||||
}
|
||||
|
||||
Vector2 Matrix4x4::Transform(const Vector2 &rhs) const {
|
||||
return Transform(rhs.x, rhs.y);
|
||||
}
|
||||
|
||||
Matrix4x4 &Matrix4x4::operator=(const Matrix3x3 &rhs) {
|
||||
Set3x3Part(rhs);
|
||||
SetTranslatePart(0,0,0);
|
||||
SetRow(3, 0, 0, 0, 1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Matrix4x4 &Matrix4x4::operator=(const Quaternion &rhs) {
|
||||
*this = rhs.ToMatrix4x4();
|
||||
return *this;
|
||||
}
|
||||
|
||||
float &Matrix4x4::At(int row, int col) {
|
||||
return elems[row][col];
|
||||
}
|
||||
|
||||
Matrix4x4 Matrix4x4::Inverse() const {
|
||||
// Compute the inverse directly using Cramer's rule
|
||||
// Warning: This method is numerically very unstable!
|
||||
float d = Determinant();
|
||||
|
||||
d = 1.f / d;
|
||||
|
||||
float a11 = At(0, 0);float a12 = At(0, 1);float a13 = At(0, 2);float a14 = At(0, 3);
|
||||
float a21 = At(1, 0);float a22 = At(1, 1);float a23 = At(1, 2);float a24 = At(1, 3);
|
||||
float a31 = At(2, 0);float a32 = At(2, 1);float a33 = At(2, 2);float a34 = At(2, 3);
|
||||
float a41 = At(3, 0);float a42 = At(3, 1);float a43 = At(3, 2);float a44 = At(3, 3);
|
||||
|
||||
Matrix4x4 i = {
|
||||
d * (a22*a33*a44 + a23*a34*a42 + a24*a32*a43 - a22*a34*a43 - a23*a32*a44 - a24*a33*a42),
|
||||
d * (a12*a34*a43 + a13*a32*a44 + a14*a33*a42 - a12*a33*a44 - a13*a34*a42 - a14*a32*a43),
|
||||
d * (a12*a23*a44 + a13*a24*a42 + a14*a22*a43 - a12*a24*a43 - a13*a22*a44 - a14*a23*a42),
|
||||
d * (a12*a24*a33 + a13*a22*a34 + a14*a23*a32 - a12*a23*a34 - a13*a24*a32 - a14*a22*a33),
|
||||
d * (a21*a34*a43 + a23*a31*a44 + a24*a33*a41 - a21*a33*a44 - a23*a34*a41 - a24*a31*a43),
|
||||
d * (a11*a33*a44 + a13*a34*a41 + a14*a31*a43 - a11*a34*a43 - a13*a31*a44 - a14*a33*a41),
|
||||
d * (a11*a24*a43 + a13*a21*a44 + a14*a23*a41 - a11*a23*a44 - a13*a24*a41 - a14*a21*a43),
|
||||
d * (a11*a23*a34 + a13*a24*a31 + a14*a21*a33 - a11*a24*a33 - a13*a21*a34 - a14*a23*a31),
|
||||
d * (a21*a32*a44 + a22*a34*a41 + a24*a31*a42 - a21*a34*a42 - a22*a31*a44 - a24*a32*a41),
|
||||
d * (a11*a34*a42 + a12*a31*a44 + a14*a32*a41 - a11*a32*a44 - a12*a34*a41 - a14*a31*a42),
|
||||
d * (a11*a22*a44 + a12*a24*a41 + a14*a21*a42 - a11*a24*a42 - a12*a21*a44 - a14*a22*a41),
|
||||
d * (a11*a24*a32 + a12*a21*a34 + a14*a22*a31 - a11*a22*a34 - a12*a24*a31 - a14*a21*a32),
|
||||
d * (a21*a33*a42 + a22*a31*a43 + a23*a32*a41 - a21*a32*a43 - a22*a33*a41 - a23*a31*a42),
|
||||
d * (a11*a32*a43 + a12*a33*a41 + a13*a31*a42 - a11*a33*a42 - a12*a31*a43 - a13*a32*a41),
|
||||
d * (a11*a23*a42 + a12*a21*a43 + a13*a22*a41 - a11*a22*a43 - a12*a23*a41 - a13*a21*a42),
|
||||
d * (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a11*a23*a32 - a12*a21*a33 - a13*a22*a31)
|
||||
};
|
||||
return i;
|
||||
}
|
||||
|
||||
float Matrix4x4::Minor(int i, int j) const {
|
||||
int r0 = SKIPNUM(0, i);
|
||||
int r1 = SKIPNUM(1, i);
|
||||
int r2 = SKIPNUM(2, i);
|
||||
int c0 = SKIPNUM(0, j);
|
||||
int c1 = SKIPNUM(1, j);
|
||||
int c2 = SKIPNUM(2, j);
|
||||
|
||||
float a = At(r0, c0);
|
||||
float b = At(r0, c1);
|
||||
float c = At(r0, c2);
|
||||
float d = At(r1, c0);
|
||||
float e = At(r1, c1);
|
||||
float f = At(r1, c2);
|
||||
float g = At(r2, c0);
|
||||
float h = At(r2, c1);
|
||||
float k = At(r2, c2);
|
||||
|
||||
return a*e*k + b*f*g + c*d*h - a*f*h - b*d*k - c*e*g;
|
||||
}
|
||||
|
||||
float Matrix4x4::Determinant() const {
|
||||
return At(0, 0) * Minor(0,0) - At(0, 1) * Minor(0,1) + At(0, 2) * Minor(0,2) - At(0, 3) * Minor(0,3);
|
||||
}
|
||||
|
||||
float Matrix4x4::Determinant3x3() const {
|
||||
|
||||
const float a = elems[0][0];
|
||||
const float b = elems[0][1];
|
||||
const float c = elems[0][2];
|
||||
const float d = elems[1][0];
|
||||
const float e = elems[1][1];
|
||||
const float f = elems[1][2];
|
||||
const float g = elems[2][0];
|
||||
const float h = elems[2][1];
|
||||
const float i = elems[2][2];
|
||||
|
||||
return a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g;
|
||||
}
|
||||
|
||||
Matrix3x3 Matrix4x4::GetRotatePart() const {
|
||||
return Matrix3x3 {
|
||||
At(0, 0), At(0, 1), At(0, 2),
|
||||
At(1, 0), At(1, 1), At(1, 2),
|
||||
At(2, 0), At(2, 1), At(2, 2)
|
||||
};
|
||||
}
|
||||
|
||||
Matrix4x4 Matrix4x4::Transpose() const {
|
||||
Matrix4x4 copy;
|
||||
copy.elems[0][0] = elems[0][0]; copy.elems[0][1] = elems[1][0]; copy.elems[0][2] = elems[2][0]; copy.elems[0][3] = elems[3][0];
|
||||
copy.elems[1][0] = elems[0][1]; copy.elems[1][1] = elems[1][1]; copy.elems[1][2] = elems[2][1]; copy.elems[1][3] = elems[3][1];
|
||||
copy.elems[2][0] = elems[0][2]; copy.elems[2][1] = elems[1][2]; copy.elems[2][2] = elems[2][2]; copy.elems[2][3] = elems[3][2];
|
||||
copy.elems[3][0] = elems[0][3]; copy.elems[3][1] = elems[1][3]; copy.elems[3][2] = elems[2][3]; copy.elems[3][3] = elems[3][3];
|
||||
return copy;
|
||||
}
|
||||
|
||||
Vector4 Matrix4x4::Diagonal() const {
|
||||
return Vector4{At(0, 0), At(1,1), At(2,2), At(3,3)};
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::Diagonal3() const {
|
||||
return Vector3 { At(0, 0), At(1,1), At(2,2) };
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::WorldX() const {
|
||||
return GetColumn3(0);
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::WorldY() const {
|
||||
return GetColumn3(1);
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::WorldZ() const {
|
||||
return GetColumn3(2);
|
||||
}
|
||||
|
||||
bool Matrix4x4::IsFinite() const {
|
||||
for(int iy = 0; iy < Rows; ++iy)
|
||||
for(int ix = 0; ix < Cols; ++ix)
|
||||
if (!std::isfinite(elems[iy][ix]))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::GetColumn3(int index) const {
|
||||
return Vector3{At(0, index), At(1, index), At(2, index)};
|
||||
}
|
||||
|
||||
Vector2 Matrix4x4::operator*(const Vector2 &rhs) const { return this->Transform(rhs);}
|
||||
|
||||
Vector3 Matrix4x4::operator*(const Vector3 &rhs) const { return this->Transform(rhs);}
|
||||
|
||||
Vector4 Matrix4x4::operator*(const Vector4 &rhs) const { return this->Transform(rhs);}
|
||||
|
||||
Vector4 Matrix4x4::Transform(float tx, float ty, float tz, float tw) const {
|
||||
return Transform({tx, ty, tz, tw});
|
||||
}
|
||||
|
||||
Vector4 Matrix4x4::Transform(const Vector4 &rhs) const {
|
||||
return Vector4(At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z + At(0, 3) * rhs.w,
|
||||
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z + At(1, 3) * rhs.w,
|
||||
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z + At(2, 3) * rhs.w,
|
||||
At(3, 0) * rhs.x + At(3, 1) * rhs.y + At(3, 2) * rhs.z + At(3, 3) * rhs.w);
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::GetTranslatePart() const {
|
||||
return GetColumn3(3);
|
||||
}
|
||||
|
||||
Matrix4x4
|
||||
Matrix4x4::LookAt(const Vector3 &localFwd, const Vector3 &targetDir, const Vector3 &localUp, const Vector3 &worldUp) {
|
||||
Matrix4x4 m;
|
||||
m.Set3x3Part(Matrix3x3::LookAt(localFwd, targetDir, localUp, worldUp));
|
||||
m.SetTranslatePart(0,0,0);
|
||||
m.SetRow(3, 0,0,0,1);
|
||||
return m;
|
||||
}
|
||||
|
||||
Vector4 Matrix4x4::GetRow(int index) const {
|
||||
return { At(index, 0), At(index, 1), At(index, 2), At(index, 3)};
|
||||
}
|
||||
|
||||
Vector4 Matrix4x4::GetColumn(int index) const {
|
||||
return { At(0, index), At(1, index), At(2, index), At(3, index)};
|
||||
}
|
||||
|
||||
Vector3 Matrix4x4::GetRow3(int index) const {
|
||||
return Vector3{ At(index, 0), At(index, 1), At(index, 2)};
|
||||
}
|
||||
|
||||
void Matrix4x4::SwapColumns(int col1, int col2) {
|
||||
Swap(At(0, col1), At(0, col2));
|
||||
Swap(At(1, col1), At(1, col2));
|
||||
Swap(At(2, col1), At(2, col2));
|
||||
Swap(At(3, col1), At(3, col2));
|
||||
}
|
||||
|
||||
void Matrix4x4::SwapRows(int row1, int row2) {
|
||||
Swap(At(row1, 0), At(row2, 0));
|
||||
Swap(At(row1, 1), At(row2, 1));
|
||||
Swap(At(row1, 2), At(row2, 2));
|
||||
Swap(At(row1, 3), At(row2, 3));
|
||||
}
|
||||
|
||||
void Matrix4x4::SwapRows3(int row1, int row2) {
|
||||
Swap(At(row1, 0), At(row2, 0));
|
||||
Swap(At(row1, 1), At(row2, 1));
|
||||
Swap(At(row1, 2), At(row2, 2));
|
||||
}
|
||||
|
||||
void Matrix4x4::Pivot() {
|
||||
int rowIndex = 0;
|
||||
|
||||
for(int col = 0; col < Cols; ++col)
|
||||
{
|
||||
int greatest = rowIndex;
|
||||
|
||||
// find the rowIndex k with k >= 1 for which Mkj has the largest absolute value.
|
||||
for(int i = rowIndex; i < Rows; ++i)
|
||||
if (std::abs(At(i, col)) > std::abs(At(greatest, col)))
|
||||
greatest = i;
|
||||
|
||||
if (std::abs(At(greatest, col)) != 0)
|
||||
{
|
||||
if (rowIndex != greatest)
|
||||
SwapRows(rowIndex, greatest); // the greatest now in rowIndex
|
||||
|
||||
ScaleRow(rowIndex, 1.f/At(rowIndex, col));
|
||||
|
||||
for(int r = 0; r < Rows; ++r)
|
||||
if (r != rowIndex)
|
||||
SetRow(r, GetRow(r) - GetRow(rowIndex) * At(r, col));
|
||||
|
||||
++rowIndex;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Matrix4x4::ScaleColumn3(int col, float scalar) {
|
||||
At(0, col) *= scalar;
|
||||
At(1, col) *= scalar;
|
||||
At(2, col) *= scalar;
|
||||
}
|
||||
|
||||
void Matrix4x4::ScaleColumn(int col, float scalar) {
|
||||
At(0, col) *= scalar;
|
||||
At(1, col) *= scalar;
|
||||
At(2, col) *= scalar;
|
||||
At(3, col) *= scalar;
|
||||
}
|
||||
|
||||
void Matrix4x4::ScaleRow3(int row, float scalar) {
|
||||
At(row, 0) *= scalar;
|
||||
At(row, 1) *= scalar;
|
||||
At(row, 2) *= scalar;
|
||||
}
|
||||
|
||||
void Matrix4x4::ScaleRow(int row, float scalar) {
|
||||
At(row, 0) *= scalar;
|
||||
At(row, 1) *= scalar;
|
||||
At(row, 2) *= scalar;
|
||||
At(row, 3) *= scalar;
|
||||
}
|
||||
}
|
@@ -141,6 +141,15 @@ Vector4 Vector4::operator-(const Vector4& rhs) const
|
||||
|
||||
}
|
||||
|
||||
Vector4 &Vector4::operator=(const Vector4 &rhs) {
|
||||
x = rhs.x;
|
||||
y = rhs.y;
|
||||
z = rhs.z;
|
||||
w = rhs.w;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#pragma endregion
|
Reference in New Issue
Block a user