Compare commits

...

12 Commits

Author SHA1 Message Date
19b5630deb Move to implementation file 2024-01-31 20:06:35 -05:00
5080305965 Implement Mat4x4 Inverse() (Yikes!!!) 2024-01-31 20:05:31 -05:00
40e69d5c4f Implement Mat4x4 Translate, Transform, FromTranslation 2024-01-31 18:34:15 -05:00
132b8a0a66 Implement more methods 2024-01-30 21:35:55 -05:00
0c20e9bb21 Implement constant Vector4s 2024-01-30 21:35:41 -05:00
710a41cbb1 Implement Mat4x4 2024-01-30 21:30:13 -05:00
b76c5683db Remove Vector2 * 2024-01-30 21:29:42 -05:00
7278d783dc Fix Circular depends 2024-01-30 21:29:19 -05:00
ef297e525c Implement CreateFrustumFromCoordinateFrame() 2024-01-30 21:29:07 -05:00
239c90f75b Implement CreateFrustumFromCoordinateFrame() 2024-01-30 21:29:01 -05:00
09d0391c85 Fix member public 2024-01-30 21:28:42 -05:00
83021229d5 Fix circular depends 2024-01-30 21:28:21 -05:00
24 changed files with 398 additions and 110 deletions

View File

@@ -14,6 +14,10 @@ namespace Geometry {
};
class Rectangle;
class AABB;
class OBB;
class Capsule;
class Frustum;
class OBB2D;
class Line2D;
class Ray2D;

View File

@@ -1,6 +1,10 @@
#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/OBB.h>
@@ -33,21 +37,75 @@ namespace Geometry
class AABB
{
static AABB FromCenterAndSize(const Vector3 FromSize);
float MinX();
// Returns the smallest sphere that contains this AABB.
// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const;
// Returns the largest sphere that can fit inside this AABB
public:
Vector3 minPoint;
Vector3 maxPoint;
static int NumFaces() { return 6; }
static int NumEdges() { return 12;}
static int NumVertices() { return 8;}
static AABB FromCenterAndSize(const Vector3& center, const Vector3& size)
{
Vector3 halfSize = size * 0.5f;
return {center - halfSize, center + halfSize};
}
float MinX() const { return minPoint.x; }
float MinY() const { return minPoint.y; }
float MinZ() const { return minPoint.z; }
float MaxX() const { return maxPoint.x; }
float MaxY() const { return maxPoint.y; }
float MaxZ() const { return maxPoint.z; }
/// Returns the smallest sphere that contains this AABB.
/// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const
{
return Sphere(Centroid(), Size().Length()*0.5f);
}
Vector3 HalfSize() const {
return this->Size()/2.f;
}
// Returns the largest sphere that can fit inside this AABB
// This function computes the largest sphere that can fit inside this AABB.
Sphere MaximalContainedSphere() const;
Vector3 GetCentroid() const;
Sphere MaximalContainedSphere() const
{
Vector3 halfSize = HalfSize();
return Sphere(Centroid(), std::min(halfSize.x, std::min(halfSize.y, halfSize.z)));
}
bool IsFinite() const
{
return minPoint.IsFinite() && maxPoint.IsFinite();
}
Vector3 Centroid() const
{
return (minPoint+maxPoint) * 0.5f;
}
Vector3 Size() const
{
return this->maxPoint - this->minPoint;
}
// Quickly returns an arbitrary point inside this AABB
Vector3 AnyPointFast() const;
Vector3 PointInside(float x, float y, float z) const;
Vector3 PointInside(float x, float y, float z) const
{
Vector3 d = maxPoint - minPoint;
return minPoint + d.Mul({x, y, z});
}
// Returns an edge of this AABB
LineSegment Edge(int edgeIndex) const;
LineSegment Edge(int edgeIndex) const
{
switch(edgeIndex)
{
default:
case 0: return LineSegment(minPoint, {minPoint.x, minPoint.y, maxPoint.z});
}
}
Vector3 CornerPoint(int cornerIndex);
Vector3 ExtremePoint(const Vector3& direction) const;
Vector3 ExtremePoint(const Vector3& direction, float projectionDistance);
@@ -57,7 +115,6 @@ namespace Geometry
Vector3 FaceNormal(int faceIndex) const;
Plane FacePlane(int faceIndex);
static AABB MinimalEnclosingAABB(const Vector3* pointArray, int numPoints);
Vector3 GetSize();
Vector3 GetVolume();
float GetVolumeCubed();
float GetSurfaceArea();

View File

@@ -13,10 +13,10 @@ namespace Geometry
// Specifies the radius of this capsule
float r;
Capsule() {}
Capsule();
Capsule(const LineSegment& endPoints, float radius);
Capsule(const Vector3& bottomPt, const Vector3& topPt, float radius);
bool IsDegenerate()const;
bool IsDegenerate() const;
float Height() const;
float Diameter() const;
Vector3 Bottom() const;

View File

@@ -36,19 +36,5 @@ namespace Geometry
static Frustum CreateFrustumFromCamera(const CoordinateFrame& cam, float aspect, float fovY, float zNear, float zFar);
};
Frustum Frustum::CreateFrustumFromCamera(const CoordinateFrame &cam, float aspect, float fovY, float zNear, float zFar) {
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * 0.5f);
const float halfHSide = halfVSide * aspect;
const Vector3 frontMultFar = cam.Front * zFar;
frustum.NearFace = Plane{cam.Position + cam.Front * zNear, cam.Front};
frustum.FarFace = Plane{cam.Position + frontMultFar, -cam.Front};
frustum.RightFace = Plane{cam.Position, Vector3::Cross(frontMultFar - cam.Right * halfHSide, cam.Up)};
frustum.LeftFace = Plane{cam.Position, Vector3::Cross(cam.Up, frontMultFar+cam.Right*halfHSide)};
frustum.TopFace = Plane{cam.Position, Vector3::Cross(cam.Right, frontMultFar - cam.Up * halfVSide)};
frustum.BottomFace = Plane{cam.Position, Vector3::Cross(frontMultFar + cam.Up * halfVSide, cam.Right)};
return frustum;
}
}

View File

@@ -7,6 +7,9 @@ namespace Geometry
using LinearAlgebra::Vector3;
class LineSegment
{
public:
LineSegment();
LineSegment(const Vector3& a, const Vector3& b);
Vector3 A;
Vector3 B;
};

View File

@@ -1,5 +1,6 @@
#pragma once
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/AABB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Polyhedron.h>

View File

@@ -6,10 +6,21 @@
#include "AABB2D.h"
namespace Geometry {
using LinearAlgebra::Vector2;
template<typename T>
class QuadTree {
/// A fixed split rule for all QuadTrees: A QuadTree leaf node is only ever split if the leaf contains at least this many objects.
/// Leaves containing fewer than this many objects are always kept as leaves until the object count is exceeded.
constexpr static const int minQuadTreeNodeObjectCount = 16;
/// A fixed split limit rule for all QuadTrees: If the QuadTree node side length is smaller than this, the node will
/// never be split again into smaller subnodes. This provides a hard limit safety net for infinite/extra long recursion
/// in case multiple identical overlapping objects are placed into the tree.
constexpr static const float minQuadTreeQuadrantSize = 0.05f;
public:
struct Node {
Node *parent;

View File

@@ -8,6 +8,7 @@
namespace Geometry
{
using LinearAlgebra::Vector3;
class Ray
{
Vector3 Origin;

View File

@@ -1,9 +1,15 @@
#pragma once
#include "J3ML/Geometry.h"
namespace Geometry
{
class Sphere
{
public:
Sphere(const Vector3& pos, float radius)
{
}
};
}

View File

@@ -8,6 +8,7 @@ namespace LinearAlgebra
/// The CFrame is fundamentally 4 vectors (position, forward, right, up vector)
class CoordinateFrame
{
public:
Vector3 Position;
Vector3 Front;
Vector3 Right;

View File

@@ -44,6 +44,7 @@ namespace LinearAlgebra {
Vector3 GetRow(int index) const;
Vector3 GetColumn(int index) const;
float &At(int row, int col);
float At(int x, int y) const;
void SetRotatePart(const Vector3& a, float angle);
@@ -132,7 +133,11 @@ namespace LinearAlgebra {
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(const Vector3& rhs) const;
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator[](int row) const
{
return Vector3{elems[row][0], elems[row][1], elems[row][2]};
}
Vector3 operator * (const Vector3& rhs) const;
Matrix3x3 operator * (const Matrix3x3& rhs) const;

View File

@@ -12,7 +12,7 @@ namespace LinearAlgebra {
* The elements of this matrix are
* m_00, m_01, m_02, m_03
* m_10, m_11, m_12, m_13
* m_20, m_21, m_22, am_23,
* m_20, m_21, m_22, m_23,
* m_30, m_31, m_32, m_33
*
* The element m_yx is the value on the row y and column x.
@@ -60,6 +60,9 @@ namespace LinearAlgebra {
explicit Matrix4x4(const Quaternion& orientation);
/// Constructs this float4x4 from the given quaternion and translation.
/// Logically, the translation occurs after the rotation has been performed.
Matrix4x4(const Quaternion& orientation, const Vector3 &translation);
Vector3 GetTranslatePart() const;
Matrix3x3 GetRotatePart() const
@@ -73,6 +76,8 @@ namespace LinearAlgebra {
void SetTranslatePart(float translateX, float translateY, float translateZ);
void SetTranslatePart(const Vector3& offset);
void SetRotatePart(const Quaternion& q);
void Set3x3Part(const Matrix3x3& r);
void SetRow(int row, const Vector3& rowVector, float m_r3);
@@ -80,10 +85,9 @@ namespace LinearAlgebra {
void SetRow(int row, float m_r0, float m_r1, float m_r2, float m_r3);
Matrix4x4(const Quaternion& orientation, const Vector3& translation);
Vector4 GetRow(int index) const;
Vector4 GetColumn(int index) const;
float &At(int row, int col);
float At(int x, int y) const;
/// Tests if this matrix does not contain any NaNs or infs.
@@ -107,11 +111,23 @@ namespace LinearAlgebra {
Matrix4x4 Transpose() const;
Vector2 Transform(float tx, float ty) const;
Vector2 Transform(const Vector2& rhs) const;
Vector3 Transform(float tx, float ty, float tz) const;
Vector3 Transform(const Vector3& rhs) const;
Vector4 Transform(float tx, float ty, float tz, float tw) const;
Vector4 Transform(const Vector4& rhs) const;
Matrix4x4 Translate(const Vector3& rhs) const;
static Matrix4x4 FromTranslation(const Vector3& rhs);
static Matrix4x4 D3DOrthoProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DOrthoProjRH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
static Matrix4x4 D3DPerspProjLH(float nearPlane, float farPlane, float hViewportSize, float vViewportSize);
@@ -128,61 +144,34 @@ namespace LinearAlgebra {
Vector4 GetRow() const;
Vector4 GetColumn() const;
Vector4 operator[](int row)
{
return Vector4{elems[row][0], elems[row][1], elems[row][2], elems[row][3]};
}
Vector4 operator[](int row);
Matrix4x4 operator-() const;
Matrix4x4 operator +(const Matrix4x4& rhs) const;
Matrix4x4 operator - (const Matrix4x4& rhs) const;
Matrix4x4 operator *(float scalar) const
{
}
Vector2 operator * (const Vector2& rhs) const;
Vector3 operator * (const Vector3& rhs) const;
Vector4 operator * (const Vector4& rhs) const;
Matrix4x4 operator * (const Matrix3x3 &rhs) const
{
}
Matrix4x4 operator +() const { return *this; }
Matrix4x4 operator * (const Matrix4x4& rhs) const
{
Matrix4x4 operator *(float scalar) const;
Matrix4x4 operator /(float scalar) const;
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0) + At(0, 3) * rhs.At(3, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1) + At(0, 3) * rhs.At(3, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2) + At(0, 3) * rhs.At(3, 2);
float r03 = At(0, 0) * rhs.At(0, 3) + At(0, 1) * rhs.At(1, 3) + At(0, 2) * rhs.At(2, 3) + At(0, 3) * rhs.At(3, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0) + At(1, 3) * rhs.At(3, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1) + At(1, 3) * rhs.At(3, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2) + At(1, 3) * rhs.At(3, 2);
float r13 = At(1, 0) * rhs.At(0, 3) + At(1, 1) * rhs.At(1, 3) + At(1, 2) * rhs.At(2, 3) + At(1, 3) * rhs.At(3, 3);
Vector2 operator * (const Vector2& rhs) const { return this->Transform(rhs);}
Vector3 operator * (const Vector3& rhs) const { return this->Transform(rhs);}
Vector4 operator * (const Vector4& rhs) const { return this->Transform(rhs);}
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0) + At(2, 3) * rhs.At(3, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1) + At(2, 3) * rhs.At(3, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2) + At(2, 3) * rhs.At(3, 2);
float r23 = At(2, 0) * rhs.At(0, 3) + At(2, 1) * rhs.At(1, 3) + At(2, 2) * rhs.At(2, 3) + At(2, 3) * rhs.At(3, 3);
Matrix4x4 operator * (const Matrix3x3 &rhs) const;
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0) + At(3, 3) * rhs.At(3, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1) + At(3, 3) * rhs.At(3, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2) + At(3, 3) * rhs.At(3, 2);
float r33 = At(3, 0) * rhs.At(0, 3) + At(3, 1) * rhs.At(1, 3) + At(3, 2) * rhs.At(2, 3) + At(3, 3) * rhs.At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Matrix4x4 operator +() const;
Matrix4x4 operator * (const Matrix4x4& rhs) const;
Matrix4x4 &operator = (const Matrix3x3& rhs);
Matrix4x4 &operator = (const Quaternion& rhs);
Matrix4x4 &operator = (const Matrix4x4& rhs) = default;
protected:
float elems[4][4];
void SetMatrixRotatePart(Matrix4x4 &m, const Quaternion &q);
};
}

View File

@@ -8,51 +8,64 @@
namespace LinearAlgebra
{
class Quaternion : public Vector4
{
class Quaternion : public Vector4 {
public:
Quaternion();
Quaternion(const Quaternion& rhs) = default;
explicit Quaternion(const Matrix3x3& rotationMtrx);
explicit Quaternion(const Matrix4x4& rotationMtrx);
Quaternion(const Quaternion &rhs) = default;
explicit Quaternion(const Matrix3x3 &rotationMtrx);
explicit Quaternion(const Matrix4x4 &rotationMtrx);
// @note The input data is not normalized after construction, this has to be done manually.
Quaternion(float X, float Y, float Z, float W);
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
Quaternion(const Vector4& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween) {
SetFromAxisAngle(rotationAxis, rotationAngleBetween);
}
//void Inverse();
explicit Quaternion(Vector4 vector4);
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
Quaternion Inverse() const;
Quaternion Conjugate() const;
//void Normalize();
Vector3 GetWorldX() const;
Vector3 GetWorldY() const;
Vector3 GetWorldZ() const;
Vector3 GetAxis() const
{
Vector3 GetAxis() const {
float rcpSinAngle = 1 - (std::sqrt(1 - w * w));
return Vector3(x, y, z) * rcpSinAngle;
}
float GetAngle() const
{
float GetAngle() const {
return std::acos(w) * 2.f;
}
Matrix3x3 ToMatrix3x3() const;
Matrix4x4 ToMatrix4x4() const;
Matrix4x4 ToMatrix4x4(const Vector3 &translation) const;
Vector3 Transform(const Vector3& vec) const;
Vector3 Transform(float X, float Y, float Z) const;
// Note: We only transform the x,y,z components of 4D vectors, w is left untouched
@@ -89,7 +102,7 @@ namespace LinearAlgebra
Quaternion operator - () const;
float Dot(const Quaternion &quaternion) const;
float Angle() const;
float Angle() const { return std::acos(w) * 2.f;}
float AngleBetween(const Quaternion& target) const;

View File

@@ -1,8 +1,12 @@
#pragma once
#include <J3ML/J3ML.h>
#include <J3ML/LinearAlgebra.h>
#include <cstddef>
namespace LinearAlgebra {
using namespace J3ML;
/// A 2D (x, y) ordered pair.
class Vector2 {
public:
@@ -65,6 +69,11 @@ namespace LinearAlgebra {
float Magnitude() const;
static float Magnitude(const Vector2& of);
bool IsFinite() const;
static bool IsFinite(const Vector2& v);

View File

@@ -38,7 +38,7 @@ public:
}
//Returns the DirectionVector for a given angle.
/// Returns the DirectionVector for a given angle.
static Vector3 Direction(const Vector3 &rhs) ;
@@ -78,6 +78,11 @@ public:
bool operator == (const Vector3& rhs) const;
bool operator != (const Vector3& rhs) const;
bool IsFinite() const
{
return std::isfinite(x) && std::isfinite(y) && std::isfinite(z);
}
Vector3 Min(const Vector3& min) const;
static Vector3 Min(const Vector3& lhs, const Vector3& rhs);
@@ -87,7 +92,7 @@ public:
Vector3 Clamp(const Vector3& min, const Vector3& max) const;
static Vector3 Clamp(const Vector3& min, const Vector3& input, const Vector3& max);
// Returns the magnitude between the two vectors.
/// Returns the magnitude between the two vectors.
float Distance(const Vector3& to) const;
static float Distance(const Vector3& from, const Vector3& to);
@@ -97,33 +102,33 @@ public:
float LengthSquared() const;
static float LengthSquared(const Vector3& of);
// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
/// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
float Magnitude() const;
static float Magnitude(const Vector3& of);
// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
// For normalized vectors, dot returns 1 if they point in exactly the same direction,
// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
/// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
/// For normalized vectors, dot returns 1 if they point in exactly the same direction,
/// -1 if they point in completely opposite directions, and 0 if the vectors are perpendicular.
float Dot(const Vector3& rhs) const;
static float Dot(const Vector3& lhs, const Vector3& rhs);
// Projects one vector onto another and returns the result. (IDK)
/// Projects one vector onto another and returns the result. (IDK)
Vector3 Project(const Vector3& rhs) const;
static Vector3 Project(const Vector3& lhs, const Vector3& rhs);
// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
/// The cross product of two vectors results in a third vector which is perpendicular to the two input vectors.
/// The result's magnitude is equal to the magnitudes of the two inputs multiplied together and then multiplied by the sine of the angle between the inputs.
Vector3 Cross(const Vector3& rhs) const;
static Vector3 Cross(const Vector3& lhs, const Vector3& rhs);
// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
/// Returns a copy of this vector, resized to have a magnitude of 1, while preserving "direction"
Vector3 Normalize() const;
static Vector3 Normalize(const Vector3& targ);
// Linearly interpolates between two points.
// Interpolates between the points and b by the interpolant t.
// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
/// Linearly interpolates between two points.
/// Interpolates between the points and b by the interpolant t.
/// The parameter is (TODO: SHOULD BE!) clamped to the range[0, 1].
/// This is most commonly used to find a point some fraction of the wy along a line between two endpoints (eg. to move an object gradually between those points).
Vector3 Lerp(const Vector3& goal, float alpha) const;
static Vector3 Lerp(const Vector3& lhs, const Vector3& rhs, float alpha);
@@ -136,24 +141,38 @@ public:
Vector3 Add(const Vector3& rhs) const;
static Vector3 Add(const Vector3& lhs, const Vector3& rhs);
// Subtracts two vectors
/// Subtracts two vectors
Vector3 operator-(const Vector3& rhs) const;
Vector3 Sub(const Vector3& rhs) const;
static Vector3 Sub(const Vector3& lhs, const Vector3& rhs);
// Multiplies this vector by a scalar value
/// Multiplies this vector by a scalar value
Vector3 operator*(float rhs) const;
Vector3 Mul(float scalar) const;
static Vector3 Mul(const Vector3& lhs, float rhs);
// Divides this vector by a scalar
/// Multiplies this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience.
Vector3 Mul(const Vector3& rhs) const
{
}
/// Divides this vector by a scalar
Vector3 operator/(float rhs) const;
Vector3 Div(float scalar) const;
static Vector3 Div(const Vector3& lhs, float rhs);
// Unary + operator
/// Divides this vector by a vector, element-wise
/// @note Mathematically, the multiplication of two vectors is not defined in linear space structures,
/// but this function is provided here for syntactical convenience
Vector2 Div(const Vector2& v) const;
/// Unary + operator
Vector3 operator+() const; // TODO: Implement
// Unary - operator (Negation)
/// Unary - operator (Negation)
Vector3 operator-() const;
public:
float x = 0;

View File

@@ -3,4 +3,5 @@
namespace Geometry
{
Capsule::Capsule() : l() {}
}

View File

@@ -1 +1,20 @@
#include <J3ML/Geometry/Frustum.h>
namespace Geometry
{
Frustum Frustum::CreateFrustumFromCamera(const CoordinateFrame &cam, float aspect, float fovY, float zNear, float zFar) {
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * 0.5f);
const float halfHSide = halfVSide * aspect;
const Vector3 frontMultFar = cam.Front * zFar;
frustum.NearFace = Plane{cam.Position + cam.Front * zNear, cam.Front};
frustum.FarFace = Plane{cam.Position + frontMultFar, -cam.Front};
frustum.RightFace = Plane{cam.Position, Vector3::Cross(frontMultFar - cam.Right * halfHSide, cam.Up)};
frustum.LeftFace = Plane{cam.Position, Vector3::Cross(cam.Up, frontMultFar+cam.Right*halfHSide)};
frustum.TopFace = Plane{cam.Position, Vector3::Cross(cam.Right, frontMultFar - cam.Up * halfVSide)};
frustum.BottomFace = Plane{cam.Position, Vector3::Cross(frontMultFar + cam.Up * halfVSide, cam.Right)};
return frustum;
}
}

View File

@@ -2,4 +2,10 @@
namespace Geometry {
LineSegment::LineSegment(const Vector3 &a, const Vector3 &b) : A(a), B(b)
{
}
LineSegment::LineSegment() {}
}

View File

@@ -296,5 +296,9 @@ namespace LinearAlgebra {
};
}
float &Matrix3x3::At(int row, int col) {
return elems[row][col];
}
}

View File

@@ -90,11 +90,8 @@ namespace LinearAlgebra {
elems[2][3] = offset.z;
}
void Matrix4x4::SetRotatePart(const Quaternion &q) {
SetMatrixRotatePart(*this, q);
}
void Matrix4x4::SetMatrixRotatePart(Matrix4x4 &m, const Quaternion& q)
void Matrix4x4::SetRotatePart(const Quaternion& q)
{
// See e.g. http://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf .
const float x = q.x;
@@ -106,6 +103,15 @@ namespace LinearAlgebra {
elems[2][0] = 2*(x*z - y*w); elems[2][1] = 2*(y*z + x*w); elems[2][2] = 1 - 2*(x*x + y*y);
}
void Matrix4x4::Set3x3Part(const Matrix3x3& r)
{
At(0, 0) = r[0][0]; At(0, 1) = r[0][1]; At(0, 2) = r[0][2];
At(1, 0) = r[1][0]; At(1, 1) = r[1][1]; At(1, 2) = r[1][2];
At(2, 0) = r[2][0]; At(2, 1) = r[2][1]; At(2, 2) = r[2][2];
}
void Matrix4x4::SetRow(int row, const Vector3 &rowVector, float m_r3) {
SetRow(row, rowVector.x, rowVector.y, rowVector.z, m_r3);
}
@@ -171,5 +177,136 @@ namespace LinearAlgebra {
return elems[x][y];
}
Matrix4x4 Matrix4x4::operator*(const Matrix4x4 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0) + At(0, 3) * rhs.At(3, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1) + At(0, 3) * rhs.At(3, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2) + At(0, 3) * rhs.At(3, 2);
float r03 = At(0, 0) * rhs.At(0, 3) + At(0, 1) * rhs.At(1, 3) + At(0, 2) * rhs.At(2, 3) + At(0, 3) * rhs.At(3, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0) + At(1, 3) * rhs.At(3, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1) + At(1, 3) * rhs.At(3, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2) + At(1, 3) * rhs.At(3, 2);
float r13 = At(1, 0) * rhs.At(0, 3) + At(1, 1) * rhs.At(1, 3) + At(1, 2) * rhs.At(2, 3) + At(1, 3) * rhs.At(3, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0) + At(2, 3) * rhs.At(3, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1) + At(2, 3) * rhs.At(3, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2) + At(2, 3) * rhs.At(3, 2);
float r23 = At(2, 0) * rhs.At(0, 3) + At(2, 1) * rhs.At(1, 3) + At(2, 2) * rhs.At(2, 3) + At(2, 3) * rhs.At(3, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0) + At(3, 3) * rhs.At(3, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1) + At(3, 3) * rhs.At(3, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2) + At(3, 3) * rhs.At(3, 2);
float r33 = At(3, 0) * rhs.At(0, 3) + At(3, 1) * rhs.At(1, 3) + At(3, 2) * rhs.At(2, 3) + At(3, 3) * rhs.At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Vector4 Matrix4x4::operator[](int row) {
return Vector4{elems[row][0], elems[row][1], elems[row][2], elems[row][3]};
}
Matrix4x4 Matrix4x4::operator*(const Matrix3x3 &rhs) const {
float r00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0);
float r01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1);
float r02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2);
float r03 = At(0, 3);
float r10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0);
float r11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1);
float r12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2);
float r13 = At(1, 3);
float r20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0);
float r21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1);
float r22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2);
float r23 = At(2, 3);
float r30 = At(3, 0) * rhs.At(0, 0) + At(3, 1) * rhs.At(1, 0) + At(3, 2) * rhs.At(2, 0);
float r31 = At(3, 0) * rhs.At(0, 1) + At(3, 1) * rhs.At(1, 1) + At(3, 2) * rhs.At(2, 1);
float r32 = At(3, 0) * rhs.At(0, 2) + At(3, 1) * rhs.At(1, 2) + At(3, 2) * rhs.At(2, 2);
float r33 = At(3, 3);
return {r00,r01,r02,r03, r10, r11, r12, r13, r20,r21,r22,r23, r30,r31,r32,r33};
}
Matrix4x4 Matrix4x4::operator+() const { return *this; }
Matrix4x4 Matrix4x4::FromTranslation(const Vector3 &rhs) {
return Matrix4x4(1.f, 0, 0, rhs.x,
0, 1.f, 0, rhs.y,
0, 0, 1.f, rhs.z,
0, 0, 0, 1.f);
}
Matrix4x4 Matrix4x4::Translate(const Vector3 &rhs) const {
return *this * FromTranslation(rhs);
}
Vector3 Matrix4x4::Transform(const Vector3 &rhs) const {
return Transform(rhs.x, rhs.y, rhs.z);
}
Vector3 Matrix4x4::Transform(float tx, float ty, float tz) const {
return Vector3(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) * tz + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) * tz + At(1, 3),
At(2, 0) * tx + At(2, 1) * ty + At(2, 2) * tz + At(2, 3));
}
Vector2 Matrix4x4::Transform(float tx, float ty) const {
return Vector2(At(0, 0) * tx + At(0, 1) * ty + At(0, 2) + At(0, 3),
At(1, 0) * tx + At(1, 1) * ty + At(1, 2) + At(1, 3));
}
Vector2 Matrix4x4::Transform(const Vector2 &rhs) const {
return Transform(rhs.x, rhs.y);
}
Matrix4x4 &Matrix4x4::operator=(const Matrix3x3 &rhs) {
Set3x3Part(rhs);
SetTranslatePart(0,0,0);
SetRow(3, 0, 0, 0, 1);
return *this;
}
Matrix4x4 &Matrix4x4::operator=(const Quaternion &rhs) {
*this = rhs.ToMatrix4x4();
return *this;
}
float &Matrix4x4::At(int row, int col) {
return elems[row][col];
}
Matrix4x4 Matrix4x4::Inverse() const {
// Compute the inverse directly using Cramer's rule
// Warning: This method is numerically very unstable!
float d = Determinant();
d = 1.f / d;
float a11 = At(0, 0);float a12 = At(0, 1);float a13 = At(0, 2);float a14 = At(0, 3);
float a21 = At(1, 0);float a22 = At(1, 1);float a23 = At(1, 2);float a24 = At(1, 3);
float a31 = At(2, 0);float a32 = At(2, 1);float a33 = At(2, 2);float a34 = At(2, 3);
float a41 = At(3, 0);float a42 = At(3, 1);float a43 = At(3, 2);float a44 = At(3, 3);
Matrix4x4 i = {
d * (a22*a33*a44 + a23*a34*a42 + a24*a32*a43 - a22*a34*a43 - a23*a32*a44 - a24*a33*a42),
d * (a12*a34*a43 + a13*a32*a44 + a14*a33*a42 - a12*a33*a44 - a13*a34*a42 - a14*a32*a43),
d * (a12*a23*a44 + a13*a24*a42 + a14*a22*a43 - a12*a24*a43 - a13*a22*a44 - a14*a23*a42),
d * (a12*a24*a33 + a13*a22*a34 + a14*a23*a32 - a12*a23*a34 - a13*a24*a32 - a14*a22*a33),
d * (a21*a34*a43 + a23*a31*a44 + a24*a33*a41 - a21*a33*a44 - a23*a34*a41 - a24*a31*a43),
d * (a11*a33*a44 + a13*a34*a41 + a14*a31*a43 - a11*a34*a43 - a13*a31*a44 - a14*a33*a41),
d * (a11*a24*a43 + a13*a21*a44 + a14*a23*a41 - a11*a23*a44 - a13*a24*a41 - a14*a21*a43),
d * (a11*a23*a34 + a13*a24*a31 + a14*a21*a33 - a11*a24*a33 - a13*a21*a34 - a14*a23*a31),
d * (a21*a32*a44 + a22*a34*a41 + a24*a31*a42 - a21*a34*a42 - a22*a31*a44 - a24*a32*a41),
d * (a11*a34*a42 + a12*a31*a44 + a14*a32*a41 - a11*a32*a44 - a12*a34*a41 - a14*a31*a42),
d * (a11*a22*a44 + a12*a24*a41 + a14*a21*a42 - a11*a24*a42 - a12*a21*a44 - a14*a22*a41),
d * (a11*a24*a32 + a12*a21*a34 + a14*a22*a31 - a11*a22*a34 - a12*a24*a31 - a14*a21*a32),
d * (a21*a33*a42 + a22*a31*a43 + a23*a32*a41 - a21*a32*a43 - a22*a33*a41 - a23*a31*a42),
d * (a11*a32*a43 + a12*a33*a41 + a13*a31*a42 - a11*a33*a42 - a12*a31*a43 - a13*a32*a41),
d * (a11*a23*a42 + a12*a21*a43 + a13*a22*a41 - a11*a22*a43 - a12*a23*a41 - a13*a21*a42),
d * (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a11*a23*a32 - a12*a21*a33 - a13*a22*a31)
};
return i;
}
}

View File

@@ -1,6 +1,7 @@
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace LinearAlgebra {
@@ -163,4 +164,12 @@ namespace LinearAlgebra {
x + rhs.x, y + rhs.y, z + rhs.z,w + rhs.w
};
}
Matrix4x4 Quaternion::ToMatrix4x4() const {
return Matrix4x4(*this);
}
Matrix4x4 Quaternion::ToMatrix4x4(const Vector3 &translation) const {
return {*this, translation};
}
}

View File

@@ -8,7 +8,7 @@ namespace LinearAlgebra {
Vector2 Transform2D::Transform(const Vector2 &input) const {
return transformation * input;
return transformation.Transform(input);
}
Transform2D::Transform2D(const Matrix3x3 &transform) : transformation(transform) { }

View File

@@ -22,7 +22,6 @@ namespace LinearAlgebra {
if (index == 1) return y;
return 0;
}
bool Vector2::IsWithinMarginOfError(const Vector2& rhs, float margin) const
{
return this->Distance(rhs) <= margin;
@@ -247,5 +246,11 @@ namespace LinearAlgebra {
return {this->x*v.x, this->y*v.y};
}
bool Vector2::IsFinite() const {
return std::isfinite(x) && std::isfinite(y);
}
Vector2 Vector2::Div(const Vector2 &v) const {
return {this->x/v.x, this->y/v.y};
}
}

View File

@@ -9,6 +9,8 @@
namespace LinearAlgebra {
const Vector4 Vector4::Zero = {0,0,0,0};
const Vector4 Vector4::NaN = {NAN, NAN, NAN, NAN};
Vector4::Vector4(): x(0), y(0), z(0), w(0)
{}