Adding code x3

This commit is contained in:
2023-12-27 21:42:38 -06:00
parent f90f1cf40b
commit 24cc2e79bc
8 changed files with 152 additions and 35 deletions

View File

@@ -21,10 +21,7 @@ namespace Math
float NormalizeToRange(float input, float fromLower, float fromUpper, float toLower, float toUpper);
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to)
{
}
float NormalizeToRange(float input, const NumberRange& from, const NumberRange& to);
// auto rotation_normalized = NormalizeToRange(inp, {0, 360}, {-1, 1});
inline float Lerp(float a, float b, float t);

View File

@@ -9,7 +9,13 @@ namespace LinearAlgebra
/// Transitional datatype, not useful for internal representation of rotation
/// But has uses for conversion and manipulation.
class AxisAngle {
Vector3 Axis;
float Angle;
Vector3 axis;
float angle;
public:
AxisAngle();
AxisAngle(Vector3 axis, float angle);
};
}

View File

@@ -1,5 +1,5 @@
#pragma once
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector3.h>
namespace LinearAlgebra {

View File

@@ -2,9 +2,12 @@
#include <J3ML/LinearAlgebra.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
namespace LinearAlgebra
{
class Quaternion
class Quaternion : public Vector4
{
public:
Quaternion();
@@ -12,15 +15,25 @@ namespace LinearAlgebra
explicit Quaternion(const Matrix3x3& rotationMtrx);
explicit Quaternion(const Matrix4x4& rotationMtrx);
// @note The input data is not normalized after construction, this has to be done manually.
Quaternion(float x, float y, float z, float w);
Quaternion(float X, float Y, float Z, float W);
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
Quaternion(const Vector4& rotationAxis, float rotationAngleBetween) { SetFromAxisAngle(rotationAxis, rotationAngleBetween); }
//void Inverse();
explicit Quaternion(Vector4 vector4);
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
Quaternion Inverse() const;
Quaternion Conjugate() const;
//void Normalize();
Quaternion Normalize() const;
Vector3 GetWorldX() const;
Vector3 GetWorldY() const;
Vector3 GetWorldZ() const;
@@ -35,22 +48,21 @@ namespace LinearAlgebra
Quaternion GetInverse() const;
Quaternion Lerp(const Quaternion& b, float t) const;
Quaternion Slerp(const Quaternion& target) const;
Quaternion Slerp(const Quaternion& q2, float t) const;
void SetFromAxisAngle(const Vector3& axis, float angle);
void SetFromAxisAngle(const Vector4& axis, float angle)
{
}
Quaternion Normalize() const;
static Quaternion LookAt(const Vector3& position, const Vector3& direction, const Vector3& axisUp);
// TODO: Document (But do not override!) certain math functions that are the same for Vec4
// TODO: Double Check which operations need to be overriden for correct behavior!
// Multiplies two quaternions together.
// The product q1 * q2 returns a quaternion that concatenates the two orientation rotations.
// The rotation q2 is applied first before q1.
Quaternion operator * (const Quaternion& rhs) const;
Quaternion operator * (const Quaternion& rhs) const;
Quaternion operator * (float scalar) const;
@@ -59,14 +71,16 @@ namespace LinearAlgebra
Vector4 operator * (const Vector4& rhs) const;
// Divides a quaternion by another. Divison "a / b" results in a quaternion that rotates the orientation b to coincide with orientation of
Quaternion operator / (const Quaternion& rhs) const;
//Quaternion operator / (const Quaternion& rhs) const;
Quaternion operator +(const Quaternion& rhs) const;
Quaternion operator +() const;
Quaternion operator -() const;
public:
float x = 0;
float y = 0;
float z = 0;
float w = 0;
float Dot(const Quaternion &quaternion) const;
float Angle() const;
float AngleBetween(const Quaternion& target) const;
AxisAngle ToAxisAngle() const;
};
}

View File

@@ -33,7 +33,6 @@ namespace LinearAlgebra {
float operator[](std::size_t index) const;
bool IsWithinMarginOfError(const Vector4& rhs, float margin=0.0001f) const;
bool IsNormalized(float epsilonSq = 1e-5f) const;
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsFinite() const;
@@ -85,10 +84,10 @@ namespace LinearAlgebra {
Vector4 operator-() const; // Unary - Operator (Negation)
public:
#if MUTABLE
float x = 0;
float y = 0;
float z = 0;
float w = 0;
float x;
float y;
float z;
float w;
#else
float x = 0;
float y = 0;

View File

@@ -1,7 +1,7 @@
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace LinearAlgebra {
Quaternion Quaternion::operator-() const
@@ -56,4 +56,90 @@ namespace LinearAlgebra {
Quaternion Quaternion::operator+() const { return *this; }
Quaternion::Quaternion() {}
Quaternion::Quaternion(float X, float Y, float Z, float W) : Vector4(X,Y,Z,W) {}
// TODO: implement
float Quaternion::Dot(const Quaternion &quaternion) const {}
Quaternion::Quaternion(Vector4 vector4) {
}
float Quaternion::Angle() const {
return std::acos(w) * 2.f;
}
Quaternion Quaternion::Normalize() const {
float length = Length();
if (length < 1e-4f)
return {0,0,0,0};
float reciprocal = 1.f / length;
return {
x * reciprocal,
y * reciprocal,
z * reciprocal,
w * reciprocal
};
}
Quaternion Quaternion::Conjugate() const {
return { -x, -y, -z, w };
}
Quaternion Quaternion::Inverse() const {
return Conjugate();
}
Quaternion Quaternion::Slerp(const Quaternion &q2, float t) const {
float angle = this->Dot(q2);
float sign = 1.f;
if (angle < 0.f)
{
angle = -angle;
sign = -1.f;
}
float a;
float b;
if (angle < 0.999)
{
// angle = Acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;
float ta = t*angle;
// Not using a lookup table, manually compute the two sines by using a very rough approximation.
float ta2 = ta*ta;
b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
a = angle - ta;
float a2 = a*a;
a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
}
else // If angle is close to taking the denominator to zero, resort to linear interpolation (and normalization).
{
a = 1.f - t;
b = t;
}
// Lerp and renormalize.
return (*this * (a * sign) + q2 * b).Normalize();
}
AxisAngle Quaternion::ToAxisAngle() const {
float halfAngle = std::acos(w);
float angle = halfAngle * 2.f;
// TODO: Can Implement Fast Inverse Sqrt Here
float reciprocalSinAngle = 1.f / std::sqrt(1.f - w*w);
Vector3 axis = {
x*reciprocalSinAngle,
y*reciprocalSinAngle,
z*reciprocalSinAngle
};
return {axis, angle};
}
float Quaternion::AngleBetween(const Quaternion &target) const {
Quaternion delta = target / *this;
return delta.Normalize().Angle();
}
}

View File

@@ -1,3 +1,5 @@
//
// Created by josh on 12/26/2023.
//
#include <J3ML/LinearAlgebra/Transform2D.h>
namespace LinearAlgebra {
}

View File

@@ -118,6 +118,19 @@ Vector4 Vector4::operator-(const Vector4& rhs) const
return {x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w};
}
Vector4 Vector4::operator*(float rhs) const {
return {
this->x * rhs,
this->y * rhs,
this->z * rhs,
this->w * rhs
};
}
bool Vector4::IsWithinMarginOfError(const Vector4 &rhs, float margin) const {
return this->Distance(rhs) <= margin;
}
}
#pragma endregion