Implementing Vector3 Unit Tests

This commit is contained in:
2024-01-02 16:29:19 -05:00
parent 0620c8aea5
commit 09922ac0bd
7 changed files with 298 additions and 14 deletions

View File

@@ -11,7 +11,7 @@ namespace LinearAlgebra {
// Constructs a new Vector2 with the value (X, Y)
Vector2(float X, float Y);
Vector2(const Vector2& rhs); // Copy Constructor
Vector2(Vector2&&) = default; // Move Constructor
//Vector2(Vector2&&) = default; // Move Constructor
static const Vector2 Zero;
static const Vector2 Up;
@@ -80,7 +80,7 @@ namespace LinearAlgebra {
Vector2 Lerp(const Vector2& rhs, float alpha) const;
// @see Lerp
static Vector2 Lerp(const Vector2& lhs, const Vector2& rhs, float alpha);
// Note: Input vectors MUST be normalized first!
float AngleBetween(const Vector2& rhs) const;
static float AngleBetween(const Vector2& lhs, const Vector2& rhs);
@@ -104,12 +104,11 @@ namespace LinearAlgebra {
Vector2 Div(float scalar) const;
static Vector2 Div(const Vector2& lhs, float rhs);
// Unary operator +
Vector2 operator +() const; // TODO: Implement
Vector2 operator -() const;
// Assigns a vector to another
Vector2& operator=(const Vector2&v);
Vector2& operator+=(const Vector2& rhs); // Adds a vector to this vector, in-place.

View File

@@ -36,8 +36,6 @@ public:
void SetY(float newY);
void SetZ(float newZ);
bool IsWithinMarginOfError(const Vector3& rhs, float margin=0.001f) const;
bool IsNormalized(float epsilonSq = 1e-5f) const;
bool IsZero(float epsilonSq = 1e-6f) const;
@@ -68,10 +66,7 @@ public:
// Returns the length of the vector, which is sqrt(x^2 + y^2 + z^2)
float Magnitude() const;
static float Magnitude(const Vector3& of)
{
}
static float Magnitude(const Vector3& of);
// Returns a float value equal to the magnitudes of the two vectors multiplied together and then multiplied by the cosine of the angle between them.
// For normalized vectors, dot returns 1 if they point in exactly the same direction,

View File

@@ -152,6 +152,7 @@ namespace LinearAlgebra {
auto m21 = this->elems[2][1];
auto m22 = this->elems[2][2];
// NO: This is correct order for transposition!
return {
m00, m10, m20,
m01, m11, m21,
@@ -162,7 +163,7 @@ namespace LinearAlgebra {
Vector2 Matrix3x3::Transform(const Vector2 &rhs) const {
return {
At(0,0) * rhs.x + At(0, 1) * rhs.y,
At(1, 0) * rhs.x + At(1, 1) * rhs.y
At(1,0) * rhs.x + At(1, 1) * rhs.y
};
}

View File

@@ -2,6 +2,7 @@
#include <cassert>
#include <algorithm>
#include <valarray>
#include <iostream>
namespace LinearAlgebra {
@@ -115,6 +116,7 @@ namespace LinearAlgebra {
{
auto numer = this->Dot(rhs);
auto denom = this->Magnitude() * rhs.Magnitude();
std::cout << numer << ", " << denom << std::endl;
return std::acos(numer / denom);
}
@@ -198,5 +200,37 @@ namespace LinearAlgebra {
Vector2 Vector2::Lerp(const Vector2 &lhs, const Vector2 &rhs, float alpha) { return lhs.Lerp(rhs, alpha); }
Vector2 Vector2::Div(const Vector2 &lhs, float rhs) {
return lhs.Div(rhs);
}
Vector2 Vector2::Mul(const Vector2 &lhs, float rhs) {
return lhs.Mul(rhs);
}
Vector2 Vector2::Sub(const Vector2 &lhs, const Vector2 &rhs) {
return lhs.Sub(rhs);
}
Vector2 Vector2::Add(const Vector2 &lhs, const Vector2 &rhs) {
return lhs.Add(rhs);
}
Vector2 Vector2::Add(const Vector2 &rhs) const {
return *this + rhs;
}
Vector2 Vector2::Sub(const Vector2 &rhs) const {
return *this - rhs;
}
Vector2 Vector2::Mul(float scalar) const {
return *this * scalar;
}
Vector2 Vector2::Div(float scalar) const {
return *this / scalar;
}
}

View File

@@ -14,6 +14,7 @@ namespace LinearAlgebra {
const Vector3 Vector3::Right = {1, 0, 0};
const Vector3 Vector3::Forward = {0, 0, -1};
const Vector3 Vector3::Backward = {0, 0, 1};
const Vector3 Vector3::NaN = {NAN, NAN, NAN};
Vector3 Vector3::operator+(const Vector3& rhs) const
{
@@ -231,5 +232,61 @@ namespace LinearAlgebra {
return std::abs(LengthSquared()-1.f) <= epsilonSq;
}
Vector3 Vector3::Cross(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Cross(rhs);
}
Vector3 Vector3::Normalize(const Vector3 &targ) {
return targ.Normalize();
}
Vector3 Vector3::Project(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Project(rhs);
}
float Vector3::Dot(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Dot(rhs);
}
float Vector3::Magnitude(const Vector3 &of) {
return of.Magnitude();
}
Vector3 Vector3::Lerp(const Vector3 &lhs, const Vector3 &rhs, float alpha) {
return lhs.Lerp(rhs, alpha);
}
Vector3 Vector3::Add(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Add(rhs);
}
Vector3 Vector3::Add(const Vector3 &rhs) const {
return *this + rhs;
}
Vector3 Vector3::Sub(const Vector3 &rhs) const {
return *this - rhs;
}
Vector3 Vector3::Sub(const Vector3 &lhs, const Vector3 &rhs) {
lhs.Sub(rhs);
}
Vector3 Vector3::Mul(float scalar) const {
return *this * scalar;
}
Vector3 Vector3::Mul(const Vector3 &lhs, float rhs) {
return lhs.Mul(rhs);
}
Vector3 Vector3::Div(float scalar) const {
return *this / scalar;
}
Vector3 Vector3::Div(const Vector3 &lhs, float rhs) {
return lhs.Div(rhs);
}
#pragma endregion
}

View File

@@ -24,7 +24,27 @@ TEST(Vector2Test, V2_Addition_Op)
EXPECT_EQ(A+B, C);
}
TEST(Vector2Test, V2_Subtraction_Op)
TEST(Vector2Test, V2_Addition_Method)
{
Vector2 A {2,2};
Vector2 B {2,2};
Vector2 C {4, 4};
EXPECT_EQ(A.Add(B), C);
}
TEST(Vector2Test, V2_Addition_Static)
{
Vector2 A {3, 3};
Vector2 B {2, 2};
Vector2 C {5, 5};
EXPECT_EQ(Vector2::Add(A, B), C);
}
TEST(Vector2Test, V2_Subtract_Op)
{
Vector2 A {1,1};
Vector2 B {2,2};
@@ -34,6 +54,26 @@ TEST(Vector2Test, V2_Subtraction_Op)
EXPECT_EQ(A-B, C);
}
TEST(Vector2Test, V2_Subtract_Method)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {-1, -1};
EXPECT_EQ(A.Sub(B), C);
}
TEST(Vector2Test, V2_Subtract_Static)
{
Vector2 A {1,1};
Vector2 B {2,2};
Vector2 C {-1, -1};
EXPECT_EQ(Vector2::Sub(A, B), C);
}
TEST(Vector2Test, V2_Scalar_Multiplication)
{
Vector2 A {5, 1};
@@ -84,20 +124,60 @@ TEST(Vector2Test, V2_Max)
TEST(Vector2Test, V2_Clamp)
{
Vector2 Input{0, 20};
Vector2 Minimum { 2, 2};
Vector2 Maximum {16, 16};
Vector2 ExpectedResult {2, 16};
EXPECT_EQ(Input.Clamp(Minimum, Maximum), ExpectedResult);
}
TEST(Vector2Test, V2_DotProduct)
{
// TODO: Equality
Vector2 A {2, 2};
Vector2 B {1, 1};
EXPECT_FLOAT_EQ(A.Dot(B), 1.f);
}
TEST(Vector2Test, V2_Project)
{
Vector2 Base {1, 1};
Vector2 Projected {1, 1};
Vector2 ExpectedResult {0.5, 0.5};
EXPECT_EQ(Base.Project(Projected), ExpectedResult);
}
TEST(Vector2Test, V2_Normalize)
{
Vector2 A{2, 0};
Vector2 B{1, 0};
EXPECT_EQ(A.Normalize(), B);
}
TEST(Vector2Test, V2_Lerp)
{
Vector2 A {2,2};
Vector2 B {10, 10};
Vector2 C {6, 6};
EXPECT_EQ(A.Lerp(B, 0.f), A);
EXPECT_EQ(A.Lerp(B, 1.f), B);
EXPECT_EQ(A.Lerp(B, 0.5f), C);
}
TEST(Vector2Test, V2_AngleBetween)
{
Vector2 A {0.5f, 0.5};
Vector2 B {0.5f, 0.1f};
A = A.Normalize();
B = B.Normalize();
// TODO: AngleBetween returns not a number
EXPECT_FLOAT_EQ(A.AngleBetween(B), 0.58800244);
}

View File

@@ -5,5 +5,123 @@ using Vector3 = LinearAlgebra::Vector3;
TEST(Vector3Test, V3_Constructor_Default)
{
EXPECT_EQ(Vector3(), Vector3::Zero);
}
}
TEST(Vector3Test, V3_Constructor_XYZ)
{
Vector3 Input {0, 1, 0};
EXPECT_EQ(Input, Vector3::Down);
}
TEST(Vector3Test, V3_Addition_Op) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(A + B, ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Method) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(A.Add(B), ExpectedResult);
}
TEST(Vector3Test, V3_Addition_Static) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(Vector3::Add(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Op) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(A - B, ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Method) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(A.Sub(B), ExpectedResult);
}
TEST(Vector3Test, V3_Subtract_Static) {
Vector3 A {};
Vector3 B {};
Vector3 ExpectedResult {};
EXPECT_EQ(Vector3::Sub(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Op) {
Vector3 A { };
float B = 1.5f;
Vector3 ExpectedResult {};
EXPECT_EQ(A * B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Method) {
Vector3 A { };
float B = 1.5f;
Vector3 ExpectedResult {};
EXPECT_EQ(A.Mul(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Mult_Static) {
Vector3 A { };
float B = 1.5f;
Vector3 ExpectedResult {};
EXPECT_EQ(Vector3::Mul(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Op) {
Vector3 A {};
float B = 1.5f;
Vector3 ExpectedResult { };
EXPECT_EQ(A / B, ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Method) {
Vector3 A { };
float B = 1.5f;
Vector3 ExpectedResult { };
EXPECT_EQ(A.Div(B), ExpectedResult);
}
TEST(Vector3Test, V3_Scalar_Div_Static) {
Vector3 A { };
float B = 1.5f;
Vector3 ExpectedResult { };
EXPECT_EQ(Vector3::Div(A, B), ExpectedResult);
}
TEST(Vector3Test, V3_Sizeof) {
EXPECT_EQ(sizeof(Vector3), 12);
}
TEST(Vector3Test, V3_NaN) {
EXPECT_NE(Vector3(0, 0, 0), Vector3::NaN);
}
TEST(Vector3Test, V3_Min) {}
TEST(Vector3Test, V3_Max) {}
TEST(Vector3Test, V3_Clamp) {}
TEST(Vector3Test, V3_DotProduct) {}
TEST(Vector3Test, V3_CrossProduct) {}
TEST(Vector3Test, V3_Project) {}
TEST(Vector3Test, V3_Normalize) {}
TEST(Vector3Test, V3_Lerp) {}
TEST(Vector3Test, V3_AngleBetween) {}