2 Commits

Author SHA1 Message Date
a29e8cb6bd Add ReverseByteOrder(buffer) 2025-06-09 15:35:03 -05:00
70d721aef3 Refactoring API to be nice and clean!! 2025-06-09 15:26:43 -05:00
4 changed files with 216 additions and 114 deletions

View File

@@ -0,0 +1,80 @@
# Endianness Library
A modern C++ library for handling endianness conversions and byte order operations. This library provides a robust set of tools for working with different byte orders in a platform-independent manner.
## Features
- Platform-independent endianness detection
- Byte order conversion utilities
- Network byte order (big-endian) conversion functions
- Support for various data types:
- Integer types (8, 16, 32, 64-bit, signed and unsigned)
- Floating-point types (float, double)
- Modern C++20 implementation
- Cross-platform support (Windows and Unix-like systems)
## Requirements
- C++20 compatible compiler
- CMake 3.18 or higher
## Building the Project
```bash
# Create a build directory
mkdir build && cd build
# Configure with CMake
cmake ..
# Build the project
cmake --build .
```
## Usage
The library provides several key functions for endianness operations:
```cpp
#include <Endianness.hpp>
// Check system endianness
bool isLittleEndian = Endianness::IsLittleEndian();
bool isBigEndian = Endianness::IsBigEndian();
// Convert between host and network byte order
uint16_t networkValue = Endianness::HostToNetworkOrder(hostValue);
uint16_t hostValue = Endianness::NetworkToHostOrder(networkValue);
// Reverse byte order
uint32_t reversed = Endianness::ReverseByteOrder(originalValue);
// Conditional byte order reversal
uint64_t conditionalReversed = Endianness::ReverseByteOrderIfLittleEndian(value);
```
## Supported Types
The library supports the following types for byte order operations:
- Unsigned integers: `u8`, `u16`, `u32`, `u64`
- Signed integers: `s8`, `s16`, `s32`, `s64`
- Floating-point: `float`, `double`
## Project Structure
```
.
├── include/
│ └── Endianness.hpp # Main library header
├── src/ # Implementation files
├── main.cpp # Test program
└── CMakeLists.txt # Build configuration
```
## License
This project is released into the public domain under the Unlicense. See the [LICENSE](LICENSE) file for details.
## Contributing

View File

@@ -18,41 +18,21 @@ namespace IntegerLiterals
using s32 = int32_t; using sl = s32;
using s64 = int64_t; using sd = s64;
constexpr inline u8 operator ""_u8(unsigned long long int value) { return value;}
constexpr inline ub operator ""_ub(unsigned long long int value) { return value;}
constexpr inline u16 operator ""_u16(unsigned long long int value) { return value;}
constexpr inline us operator ""_us(unsigned long long int value) { return value;}
constexpr inline u32 operator ""_u32(unsigned long long int value) { return value;}
constexpr inline u32 operator ""_ul(unsigned long long int value) { return value;}
constexpr inline u64 operator ""_u64(unsigned long long int value) { return value;}
constexpr inline u64 operator ""_ud(unsigned long long int value) { return value;}
constexpr inline s8 operator ""_s8(long double value) { return value;}
constexpr inline s8 operator ""_sb(long double value) { return value;}
constexpr inline s16 operator ""_s16(long double value) { return value;}
constexpr inline s16 operator ""_ss(long double value) { return value;}
constexpr inline s32 operator ""_s32(long double value) { return value;}
constexpr inline s32 operator ""_sl(long double value) { return value;}
constexpr inline s64 operator ""_s64(long double value) { return value;}
constexpr inline s64 operator ""_sd(long double value) { return value;}
}
using namespace IntegerLiterals;
/// https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
/// Platform-independent functions for swapping the byte order of common data types.
namespace Endianness
{
using namespace IntegerLiterals;
/// Returns true if the host machine is big-endian.
constexpr bool IsBigEndian() noexcept { return (std::endian::native == std::endian::big); }
// TODO: It seems these can't have their implementation put into
// a separate .cpp file else the compiler throws undefined reference
// is it because they're constexpr?
constexpr bool IsBigEndian() { return (std::endian::native == std::endian::big); }
constexpr bool IsLittleEndian() { return (std::endian::native == std::endian::little); }
/// Returns true if the host machine is little-endian.
constexpr bool IsLittleEndian() noexcept { return (std::endian::native == std::endian::little); }
template <typename T>
T ReverseByteOrder(T val)
@@ -66,11 +46,43 @@ namespace Endianness
pRetVal[size - 1 - i] = pVal[i];
}
return retVal;
//return byteswap(val);
}
template <typename T>
void ReverseByteOrder(T* buffer, size_t length)
{
// Compile-time check to ensure T is an integral type and not bool
// (single-byte types like char, int8_t don't need byte reversal)
static_assert(std::is_integral_v<T>, "ReverseByteOrder (buffer): Type T must be an integral type.");
static_assert(sizeof(T) > 1, "ReverseByteOrder (buffer): Type T must be larger than 1 byte for byte reversal.");
if (!buffer || length == 0) {
return; // Nothing to do
}
for (size_t i = 0; i < length; ++i) {
buffer[i] = ReverseByteOrder(buffer[i]); // Call the single-value function
}
}
#pragma region Template Specializations
/// This function simply returns the input value, as no byte order can be swapped on a single-byte-length value.
template <> u8 ReverseByteOrder<u8>(u8 val);
/// This function simply returns the input value, as no byte order can be swapped on a single-byte-length value.
template <> s8 ReverseByteOrder<s8>(s8 val);;
template <> u16 ReverseByteOrder<u16>(u16 val);
template <> u32 ReverseByteOrder<u32>(u32 val);
template <> u64 ReverseByteOrder<u64>(u64 val);
template <> s16 ReverseByteOrder<s16>(s16 val);
template <> s32 ReverseByteOrder<s32>(s32 val);
template <> s64 ReverseByteOrder<s64>(s64 val);
#pragma endregion
template <typename T>
T ReverseByteOrderIfLittleEndian(T val)
{
@@ -80,59 +92,9 @@ namespace Endianness
}
/// Returns the given values converted into network byte order.
/// Generally on x86, numbers are stored in 'little-endian' order.
/// Network order is 'big-endian'. Supposing a big-endian host machine,
/// no conversion will take place and the original value will be returned.
u16 HostToNetworkOrder(u16 host);
u32 HostToNetworkOrder(u32 host);
u64 HostToNetworkOrder(u64 host);
s16 HostToNetworkOrder(s16 host);
s32 HostToNetworkOrder(s32 host);
s64 HostToNetworkOrder(s64 host);
float HostToNetworkOrder(float host);
double HostToNetworkOrder(double host);
template <typename T> T HostToNetworkOrder(T host) {throw;}
template<> inline u16 HostToNetworkOrder<u16>(u16 host) { return HostToNetworkOrder(host);}
template<> inline u32 HostToNetworkOrder<u32>(u32 host) { return HostToNetworkOrder(host);}
template<> inline u64 HostToNetworkOrder<u64>(u64 host) { return HostToNetworkOrder(host);}
template<> inline s16 HostToNetworkOrder<s16>(s16 host) { return HostToNetworkOrder(host);}
template<> inline s32 HostToNetworkOrder<s32>(s32 host) { return HostToNetworkOrder(host);}
template<> inline s64 HostToNetworkOrder<s64>(s64 host) { return HostToNetworkOrder(host);}
template<> inline float HostToNetworkOrder<float>(float host) { return HostToNetworkOrder(host);}
template<> inline double HostToNetworkOrder<double>(double host) { return HostToNetworkOrder(host);}
/// Returns the given values converted into host-byte order.
/// On x86, this will usually be 'little-endian'
/// On ARM (and other RISC architectures), it is often big-endian.
/// Supposing a big-endian host machine, no conversion will take place and the original value will be returned.
u16 NetworkToHostOrder(u16 network);
u32 NetworkToHostOrder(u32 network);
u64 NetworkToHostOrder(u64 network);
s16 NetworkToHostOrder(s16 network);
s32 NetworkToHostOrder(s32 network);
s64 NetworkToHostOrder(s64 network);
float NetworkToHostOrder(float network);
double NetworkToHostOrder(double network);
template <typename T> T NetworkToHostOrder(T network) { return NetworkToHostOrder(network);}
template<> inline u16 NetworkToHostOrder<u16>(u16 network) { return NetworkToHostOrder(network);}
template<> inline u32 NetworkToHostOrder<u32>(u32 network) { return NetworkToHostOrder(network);}
template<> inline u64 NetworkToHostOrder<u64>(u64 network) { return NetworkToHostOrder(network);}
template<> inline s16 NetworkToHostOrder<s16>(s16 network) { return NetworkToHostOrder(network);}
template<> inline s32 NetworkToHostOrder<s32>(s32 network) { return NetworkToHostOrder(network);}
template<> inline s64 NetworkToHostOrder<s64>(s64 network) { return NetworkToHostOrder(network);}
template<> inline float NetworkToHostOrder<float>(float network) { return NetworkToHostOrder(network);}
template<> inline double NetworkToHostOrder<double>(double network) { return NetworkToHostOrder(network);}
template <typename T> T HostToNetworkOrder(T host) { return ReverseByteOrderIfLittleEndian(host);}
template <typename T> T NetworkToHostOrder(T network) { return ReverseByteOrderIfLittleEndian(network);}

View File

@@ -14,21 +14,9 @@ void TestRoundTrip(const std::string& type_name, T original_value) {
std::cout << "Testing " << type_name << ": " << std::endl;
if constexpr (std::is_floating_point_v<T>) {
std::cout << " Original: " << original_value << std::endl;
std::cout << " Network (raw bits): 0x" << std::hex << std::setw(sizeof(T) * 2) << std::setfill('0');
if constexpr (std::is_same_v<T, float>) {
std::cout << *reinterpret_cast<uint32_t*>(&network_value);
} else { // double
std::cout << *reinterpret_cast<uint64_t*>(&network_value);
}
std::cout << std::dec << std::endl;
std::cout << " Host: " << host_value << std::endl;
} else {
std::cout << " Original: 0x" << std::hex << original_value << std::dec << std::endl;
std::cout << " Network: 0x" << std::hex << network_value << std::dec << std::endl;
std::cout << " Host: 0x" << std::hex << host_value << std::dec << std::endl;
}
std::cout << " Original: " << std::hex << original_value << std::dec << std::endl;
std::cout << " Network: " << std::hex << network_value << std::dec << std::endl;
std::cout << " Host: " << std::hex << host_value << std::dec << std::endl;
if (original_value == host_value) {
@@ -45,8 +33,8 @@ void TestReverseByteOrder(const std::string& type_name, T original_value) {
T reversed_value = Endianness::ReverseByteOrder(original_value);
std::cout << "Testing ReverseByteOrder for " << type_name << ": " << std::endl;
std::cout << " Original: 0x" << std::hex << original_value << std::dec << std::endl;
std::cout << " Reversed: 0x" << std::hex << reversed_value << std::dec << std::endl;
std::cout << " Original: " << std::hex << original_value << std::dec << std::endl;
std::cout << " Reversed: " << std::hex << reversed_value << std::dec << std::endl;
std::cout << std::endl;
}
@@ -56,8 +44,8 @@ void TestReverseByteOrderIfLittleEndian(const std::string& type_name, T original
T conditional_reversed_value = Endianness::ReverseByteOrderIfLittleEndian(original_value);
std::cout << "Testing ReverseByteOrderIfLittleEndian for " << type_name << ": " << std::endl;
std::cout << " Original: 0x" << std::hex << original_value << std::dec << std::endl;
std::cout << " Conditional Reversed: 0x" << std::hex << conditional_reversed_value << std::dec << std::endl;
std::cout << " Original: " << std::hex << original_value << std::dec << std::endl;
std::cout << " Conditional Reversed: " << std::hex << conditional_reversed_value << std::dec << std::endl;
if (Endianness::IsLittleEndian()) {
T expected_reversed = Endianness::ReverseByteOrder(original_value);
@@ -76,16 +64,34 @@ void TestReverseByteOrderIfLittleEndian(const std::string& type_name, T original
std::cout << std::endl;
}
void TestBuffer()
{
int data[500];
for (int i = 0; i < 500; i++)
{
data[i] = i*5;
}
Endianness::ReverseByteOrder(data, 500);
Endianness::ReverseByteOrder(data, 500);
}
int main()
{
for (int i = 0; i < 256; i++)
{
TestRoundTrip("u8", i);
TestRoundTrip("u16", i*i);
TestRoundTrip("u32", i*i*i);
TestRoundTrip("u64", i*i*i*i);
TestRoundTrip<uint16_t>("u16", i*i);
TestRoundTrip<uint32_t>("u32", i*i*i);
TestRoundTrip<uint64_t>("u64", i*i*i*i);
TestRoundTrip<float>("float", i / 3.14159f);
}
TestBuffer();
return 0;
}

View File

@@ -13,20 +13,74 @@
namespace Endianness
{
template <>
u8 ReverseByteOrder<unsigned char>(u8 val)
{ return val;}
// TODO: Manually swap bytes so we can depend less on clunky include directives.
u16 HostToNetworkOrder(u16 host) { return ReverseByteOrderIfLittleEndian(host); }
u16 NetworkToHostOrder(u16 network) { return ReverseByteOrderIfLittleEndian(network); }
s16 HostToNetworkOrder(s16 host) { return ReverseByteOrderIfLittleEndian( host); }
s16 NetworkToHostOrder(s16 network) { return ReverseByteOrderIfLittleEndian(network);}
u32 HostToNetworkOrder(u32 host) { return ReverseByteOrderIfLittleEndian(host); }
u32 NetworkToHostOrder(u32 network) { return ReverseByteOrderIfLittleEndian(network); }
s32 HostToNetworkOrder(s32 host) { return ReverseByteOrderIfLittleEndian(host);}
s32 NetworkToHostOrder(s32 network) { return ReverseByteOrderIfLittleEndian(network);}
u64 HostToNetworkOrder(u64 host) { return ReverseByteOrderIfLittleEndian(host); }
u64 NetworkToHostOrder(u64 network) { return ReverseByteOrderIfLittleEndian(network); }
s64 HostToNetworkOrder(s64 host) { return ReverseByteOrderIfLittleEndian(host); }
s64 NetworkToHostOrder(s64 network) { return ReverseByteOrderIfLittleEndian(network); }
template <>
s8 ReverseByteOrder<signed char>(s8 val)
{return val;}
template <>
u16 ReverseByteOrder<unsigned short>(u16 val)
{
#if defined(_MSC_VER)
return _byteswap_ushort(val);
#elif defined(__GNUC__)
return __builtin_bswap16(val);
#endif
return (val << 8) | (val >> 8);
}
template <>
u32 ReverseByteOrder<unsigned>(u32 val)
{
#ifdef _MSC_VER
return _byteswap_ulong(val);
#endif
#ifdef __GNUC__
return __builtin_bswap32(val);
#endif
val = ((val << 8) & 0xFF00FF00 ) | ((val >> 8) & 0xFF00FF );
return (val << 16) | (val >> 16);
}
template <>
u64 ReverseByteOrder<unsigned long long>(u64 val)
{
#if defined(_MSC_VER)
return _byteswap_uint64(val);
#elif defined(__GNUC__)
return __builtin_bswap64(val);
#else
val = ((val << 8) & 0xFF00FF00FF00FF00ULL ) | ((val >> 8) & 0x00FF00FF00FF00FFULL );
val = ((val << 16) & 0xFFFF0000FFFF0000ULL ) | ((val >> 16) & 0x0000FFFF0000FFFFULL );
return (val << 32) | (val >> 32);
#endif
}
template <>
s16 ReverseByteOrder<short>(s16 val)
{
return (val << 8) | ((val >> 8) & 0xFF);
}
template <>
s32 ReverseByteOrder<int>(s32 val)
{
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF );
return (val << 16) | ((val >> 16) & 0xFFFF);
}
template <>
s64 ReverseByteOrder<long long>(s64 val)
{
val = ((val << 8) & 0xFF00FF00FF00FF00ULL ) | ((val >> 8) & 0x00FF00FF00FF00FFULL );
val = ((val << 16) & 0xFFFF0000FFFF0000ULL ) | ((val >> 16) & 0x0000FFFF0000FFFFULL );
return (val << 32) | ((val >> 32) & 0xFFFFFFFFULL);
}
float HostToNetworkOrder(float host) {