Files
j3ml/include/J3ML/LinearAlgebra/Vector4.h
Redacted a5c96e8cae
Some checks failed
Run tests / Explore-Gitea-Actions (push) Failing after 1m10s
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 35s
Dependency Reconfiguration to support MSVC being picky :/
2024-06-16 23:02:32 -07:00

133 lines
4.4 KiB
C++

#pragma once
#include <cstddef>
#include <cmath>
#include <J3ML/LinearAlgebra/Common.h>
namespace J3ML::LinearAlgebra {
class Vector4 {
public:
// Default Constructor
Vector4();
// Constructs a new Vector4 with x,y,z values from a Vector3
Vector4(const Vector3& xyz, float w = 0);
// Constructs a new Vector4 with the value (X, Y, Z, W)
Vector4(float X, float Y, float Z, float W);
Vector4(const Vector4& copy) = default;
Vector4(Vector4&& move) = default;
Vector4& operator=(const Vector4& rhs);
float* ptr()
{
return &x;
}
Vector3 XYZ() const;
float GetX() const { return x; }
float GetY() const { return y; }
float GetZ() const { return z; }
float GetW() const { return w; }
#if MUTABLE
void SetX(float newX) { x = newX;}
void SetY(float newY) { y = newY;}
void SetZ(float newZ) { z = newZ;}
void SetW(float newW) { w = newW;}
#endif
static const Vector4 Zero;
static const Vector4 NaN;
float operator[](std::size_t index) const;
float &operator[](std::size_t index);
bool IsWithinMarginOfError(const Vector4& rhs, float margin=0.0001f) const;
float LengthSqXYZ() const;
bool IsNormalized3(float epsilonSq = 1e-5f) const
{
return std::abs(LengthSqXYZ()-1.f) <= epsilonSq;
}
bool IsNormalized4(float epsilonSq = 1e-5f) const
{
return std::abs(LengthSquared()-1.f) <= epsilonSq;
}
bool IsNormalized(float epsilonSq = 1e-5f) const { return IsNormalized4(epsilonSq); }
bool IsZero(float epsilonSq = 1e-6f) const;
bool IsFinite() const;
bool IsPerpendicular(const Vector4& other, float epsilonSq=1e-5f) const
{
float dot = Dot(other);
return dot*dot <= epsilonSq * LengthSquared() * other.LengthSquared();
}
bool IsPerpendicular3(const Vector4& other, float epsilonSq = 1e-5f) const
{
}
bool operator==(const Vector4& rhs) const;
bool operator!=(const Vector4& rhs) const;
bool Equals(const Vector4& rhs, float epsilon = 1e-3f) const;
bool Equals(float _x, float _y, float _z, float _w, float epsilon = 1e-3f) const;
Vector4 Min(const Vector4& min) const;
Vector4 Max(const Vector4& max) const;
Vector4 Clamp(const Vector4& min, const Vector4& max) const;
float Distance(const Vector4& to) const;
float Length() const;
float LengthSquared() const;
float Magnitude() const;
float Dot(const Vector4& rhs) const;
Vector4 Project(const Vector4& rhs) const;
// While it is feasable to compute a cross-product in four dimensions
// the cross product only has the orthogonality property in 3 and 7 dimensions
// You should consider instead looking at Gram-Schmidt Orthogonalization
// to find orthonormal vectors.
Vector4 Cross3(const Vector3& rhs) const;
Vector4 Cross3(const Vector4& rhs) const;
Vector4 Cross(const Vector4& rhs) const { return Cross3(rhs); }
Vector4 Normalize() const;
Vector4 Lerp(const Vector4& goal, float alpha) const;
float AngleBetween(const Vector4& rhs) const;
// Adds two vectors
Vector4 operator+(const Vector4& rhs) const;
Vector4 Add(const Vector4& rhs) const;
static Vector4 Add(const Vector4& lhs, const Vector4& rhs);
// Subtracts two vectors
Vector4 operator-(const Vector4& rhs) const;
Vector4 Sub(const Vector4& rhs) const;
static Vector4 Sub(const Vector4& lhs, const Vector4& rhs);
// Multiplies this vector by a scalar value
Vector4 operator*(float rhs) const;
Vector4 Mul(float scalar) const;
static Vector4 Mul(const Vector4& lhs, float rhs);
// Divides this vector by a scalar
Vector4 operator/(float rhs) const;
Vector4 Div(float scalar) const;
static Vector4 Div(const Vector4& rhs, float scalar);
Vector4 operator+() const; // Unary + Operator
Vector4 operator-() const; // Unary - Operator (Negation)
public:
#if MUTABLE
float x;
float y;
float z;
float w;
#else
float x = 0;
float y = 0;
float z = 0;
float w = 0;
#endif
};
}