Files
j3ml/include/J3ML/Geometry/Frustum.h

55 lines
2.4 KiB
C++

//
// Created by dawsh on 1/25/24.
//
#pragma once
#include "Plane.h"
namespace Geometry
{
enum class FrustumType
{
Invalid,
/// Set the Frustum type to this value to define the orthographic projection formula. In orthographic projection,
/// 3D images are projected onto a 2D plane essentially by flattening the object along one direction (the plane normal).
/// The size of the projected images appear the same independent of their distance to the camera, and distant objects will
/// not appear smaller. The shape of the Frustum is identical to an oriented bounding box (OBB).
Orthographic,
/// Set the Frustum type to this value to use the perspective projection formula. With perspective projection, the 2D
/// image is formed by projecting 3D points towards a single point (the eye point/tip) of the Frustum, and computing the
/// point of intersection of the line of the projection and the near plane of the Frustum.
/// This corresponds to the optics in the real-world, and objects become smaller as they move to the distance.
/// The shape of the Frustum is a rectangular pyramid capped from the tip.
Perspective
};
class Frustum {
public:
Plane TopFace;
Plane BottomFace;
Plane RightFace;
Plane LeftFace;
Plane FarFace;
Plane NearFace;
static Frustum CreateFrustumFromCamera(const Camera& cam, float aspect, float fovY, float zNear, float zFar);
};
Frustum Frustum::CreateFrustumFromCamera(const Camera &cam, float aspect, float fovY, float zNear, float zFar) {
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * 0.5f);
const float halfHSide = halfVSide * aspect;
const Vector3 frontMultFar = cam.Front * zFar;
frustum.NearFace = Plane{cam.Position + cam.Front * zNear, cam.Front};
frustum.FarFace = Plane{cam.Position + frontMultFar, -cam.Front};
frustum.RightFace = Plane{cam.Position, Vector3::Cross(frontMultFar - cam.Right * halfHSide, cam.Up)};
frustum.LeftFace = Plane{cam.Position, Vector3::Cross(cam.Up, frontMultFar+cam.Right*halfHSide)};
frustum.TopFace = Plane{cam.Position, Vector3::Cross(cam.Right, frontMultFar - cam.Up * halfVSide)};
frustum.BottomFace = Plane{cam.Position, Vector3::Cross(frontMultFar + cam.Up * halfVSide, cam.Right)};
return frustum;
}
}