Files
j3ml/src/J3ML/LinearAlgebra/Matrix3x3.cpp
josh 3e8f83ddfb
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m7s
Implement Matrix3x3 missing members and documentation
2024-05-12 11:51:10 -04:00

534 lines
17 KiB
C++

#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <cmath>
namespace J3ML::LinearAlgebra {
const Matrix3x3 Matrix3x3::Zero = Matrix3x3(0, 0, 0, 0, 0, 0, 0, 0, 0);
const Matrix3x3 Matrix3x3::Identity = Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1);
const Matrix3x3 Matrix3x3::NaN = Matrix3x3(NAN);
Matrix3x3::Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21,
float m22) {
this->elems[0][0] = m00;
this->elems[0][1] = m01;
this->elems[0][2] = m02;
this->elems[1][0] = m10;
this->elems[1][1] = m11;
this->elems[1][2] = m12;
this->elems[2][0] = m20;
this->elems[2][1] = m21;
this->elems[2][2] = m22;
}
Vector3 Matrix3x3::GetRow(int index) const {
float x = this->elems[index][0];
float y = this->elems[index][1];
float z = this->elems[index][2];
return {x, y, z};
}
Vector3 Matrix3x3::GetColumn(int index) const {
float x = this->elems[0][index];
float y = this->elems[1][index];
float z = this->elems[2][index];
return {x, y, z};
}
float Matrix3x3::At(int x, int y) const {
return this->elems[x][y];
}
void Matrix3x3::SetAt(int x, int y, float value)
{
this->elems[x][y] = value;
}
Vector3 Matrix3x3::operator*(const Vector3 &rhs) const {
return {
At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z
};
}
Matrix3x3 Matrix3x3::operator*(const Matrix3x3 &rhs) const {
//Matrix3x3 r;
auto m00 = At(0, 0) * rhs.At(0, 0) + At(0, 1) * rhs.At(1, 0) + At(0, 2) * rhs.At(2, 0);
auto m01 = At(0, 0) * rhs.At(0, 1) + At(0, 1) * rhs.At(1, 1) + At(0, 2) * rhs.At(2, 1);
auto m02 = At(0, 0) * rhs.At(0, 2) + At(0, 1) * rhs.At(1, 2) + At(0, 2) * rhs.At(2, 2);
auto m10 = At(1, 0) * rhs.At(0, 0) + At(1, 1) * rhs.At(1, 0) + At(1, 2) * rhs.At(2, 0);
auto m11 = At(1, 0) * rhs.At(0, 1) + At(1, 1) * rhs.At(1, 1) + At(1, 2) * rhs.At(2, 1);
auto m12 = At(1, 0) * rhs.At(0, 2) + At(1, 1) * rhs.At(1, 2) + At(1, 2) * rhs.At(2, 2);
auto m20 = At(2, 0) * rhs.At(0, 0) + At(2, 1) * rhs.At(1, 0) + At(2, 2) * rhs.At(2, 0);
auto m21 = At(2, 0) * rhs.At(0, 1) + At(2, 1) * rhs.At(1, 1) + At(2, 2) * rhs.At(2, 1);
auto m22 = At(2, 0) * rhs.At(0, 2) + At(2, 1) * rhs.At(1, 2) + At(2, 2) * rhs.At(2, 2);
return Matrix3x3({m00, m01, m02}, {m10, m11, m12}, {m20, m21, m22});
}
Matrix3x3::Matrix3x3(float val) {
this->elems[0][0] = val;
this->elems[0][1] = val;
this->elems[0][2] = val;
this->elems[1][0] = val;
this->elems[1][1] = val;
this->elems[1][2] = val;
this->elems[2][0] = val;
this->elems[2][1] = val;
this->elems[2][2] = val;
}
Matrix3x3::Matrix3x3(const Vector3 &col0, const Vector3 &col1, const Vector3 &col2) {
SetColumn(0, col0);
SetColumn(1, col1);
SetColumn(2, col2);
//this->elems[0][0] = r1.x;
//this->elems[0][1] = r1.y;
//this->elems[0][2] = r1.z;
//this->elems[1][0] = r2.x;
//this->elems[1][1] = r2.y;
//this->elems[1][2] = r2.z;
//this->elems[2][0] = r3.x;
//this->elems[2][1] = r3.y;
//this->elems[2][2] = r3.z;
}
Matrix3x3::Matrix3x3(const Quaternion &orientation) {
}
float Matrix3x3::Determinant() const {
const float a = elems[0][0];
const float b = elems[0][1];
const float c = elems[0][2];
const float d = elems[1][0];
const float e = elems[1][1];
const float f = elems[1][2];
const float g = elems[2][0];
const float h = elems[2][1];
const float i = elems[2][2];
// Aight, what the fuck?
return a*(e*i - f*h) + b*(f*g - d*i) + c*(d*h - e*g);
}
Matrix3x3 Matrix3x3::Inverted() const {
// Compute the inverse directly using Cramer's rule
// Warning: This method is numerically very unstable!
float d = Determinant();
d = 1.f / d;
Matrix3x3 i = {
d * (At(1, 1) * At(2, 2) - At(1, 2) * At(2, 1)),
d * (At(0, 2) * At(2, 1) - At(0, 1) * At(2, 2)),
d * (At(0, 1) * At(1, 2) - At(0, 2) * At(1, 1)),
d * (At(1, 2) * At(2, 0) - At(1, 0) * At(2, 2)),
d * (At(0, 0) * At(2, 2) - At(0, 2) * At(2, 0)),
d * (At(0, 2) * At(1, 0) - At(0, 0) * At(1, 2)),
d * (At(1, 0) * At(2, 1) - At(1, 1) * At(2, 0)),
d * (At(2, 0) * At(0, 1) - At(0, 0) * At(2,1)),
d * (At(0,0) * At(1, 1) - At(0, 1) * At(1, 0))
};
return i;
}
Matrix3x3 Matrix3x3::Transposed() const {
auto m00 = this->elems[0][0];
auto m01 = this->elems[0][1];
auto m02 = this->elems[0][2];
auto m10 = this->elems[1][0];
auto m11 = this->elems[1][1];
auto m12 = this->elems[1][2];
auto m20 = this->elems[2][0];
auto m21 = this->elems[2][1];
auto m22 = this->elems[2][2];
// NO: This is correct order for transposition!
return {
m00, m10, m20,
m01, m11, m21,
m02, m12, m22
};
}
Vector2 Matrix3x3::Transform(const Vector2 &rhs) const {
return {
At(0,0) * rhs.x + At(0, 1) * rhs.y,
At(1,0) * rhs.x + At(1, 1) * rhs.y
};
}
Vector3 Matrix3x3::Transform(const Vector3 &rhs) const {
return {
At(0, 0) * rhs.x + At(0, 1) * rhs.y + At(0, 2) * rhs.z,
At(1, 0) * rhs.x + At(1, 1) * rhs.y + At(1, 2) * rhs.z,
At(2, 0) * rhs.x + At(2, 1) * rhs.y + At(2, 2) * rhs.z
};
}
Quaternion Matrix3x3::ToQuat() const {
auto m00 = At(0,0);
auto m01 = At(0, 1);
auto m02 = At(0, 2);
auto m10 = At(1,0);
auto m11 = At(1, 1);
auto m12 = At(1, 2);
auto m20 = At(2,0);
auto m21 = At(2, 1);
auto m22 = At(2, 2);
auto w = std::sqrt(1.f + m00 + m11 + m22) / 2.f;
float w4 = (4.f * w);
return {
(m21 - m12) / w4,
(m02 - m20) / w4,
(m10 - m01) / w4,
w
};
}
void Matrix3x3::SetRotatePart(const Vector3 &a, float angle) {
float s = std::sin(angle);
float c = std::cos(angle);
const float c1 = 1.f - c;
elems[0][0] = c+c1*a.x*a.x;
elems[1][0] = c1*a.x*a.y+s*a.z;
elems[2][0] = c1*a.x*a.z-s*a.y;
elems[0][1] = c1*a.x*a.y-s*a.z;
elems[1][1] = c+c1*a.y*a.y;
elems[2][1] = c1*a.y*a.z+s*a.x;
elems[0][2] = c1*a.x*a.z+s*a.y;
elems[1][2] = c1*a.y*a.z-s*a.x;
elems[2][2] = c+c1*a.z*a.z;
}
Matrix3x3 Matrix3x3::RotateAxisAngle(const Vector3 &axis, float angleRadians) {
Matrix3x3 r;
r.SetRotatePart(axis, angleRadians);
return r;
}
void Matrix3x3::SetRow(int i, const Vector3 &vec) {
elems[i][0] = vec.x;
elems[i][1] = vec.y;
elems[i][2] = vec.z;
}
void Matrix3x3::SetColumn(int i, const Vector3& vec)
{
elems[0][i] = vec.x;
elems[1][i] = vec.y;
elems[2][i] = vec.z;
}
Matrix3x3
Matrix3x3::LookAt(const Vector3 &forward, const Vector3 &target, const Vector3 &localUp, const Vector3 &worldUp) {
// User must input proper normalized input direction vectors
// In the local space, the forward and up directions must be perpendicular to be well-formed.
// In the world space, the target direction and world up cannot be degenerate (co-linear)
// Generate the third basis vector in the local space;
Vector3 localRight = localUp.Cross(forward).Normalize();
// A. Now we have an orthonormal linear basis {localRight, localUp, forward} for the object local space.
// Generate the third basis vector for the world space
Vector3 worldRight = worldUp.Cross(target).Normalize();
// Since the input worldUp vector is not necessarily perpendicular to the target direction vector
// We need to compute the real world space up vector that the "head" of the object will point
// towards when the model is looking towards the desired target direction
Vector3 perpWorldUp = target.Cross(worldRight).Normalize();
// B. Now we have an orthonormal linear basis {worldRight, perpWorldUp, targetDirection } for the desired target orientation.
// We want to build a matrix M that performs the following mapping:
// 1. localRight must be mapped to worldRight. (M * localRight = worldRight)
// 2. localUp must be mapped to perpWorldUp. (M * localUp = perpWorldUp)
// 3. localForward must be mapped to targetDirection. (M * localForward = targetDirection)
// i.e. we want to map the basis A to basis B.
// This matrix M exists, and it is an orthonormal rotation matrix with a determinant of +1, because
// the bases A and B are orthonormal with the same handedness.
// Below, use the notation that (a,b,c) is a 3x3 matrix with a as its first column, b second, and c third.
// By algebraic manipulation, we can rewrite conditions 1, 2 and 3 in a matrix form:
// M * (localRight, localUp, localForward) = (worldRight, perpWorldUp, targetDirection)
// or M = (worldRight, perpWorldUp, targetDirection) * (localRight, localUp, localForward)^{-1}.
// or M = m1 * m2, where
// m1 equals (worldRight, perpWorldUp, target):
Matrix3x3 m1(worldRight, perpWorldUp, target);
// and m2 equals (localRight, localUp, localForward)^{-1}:
Matrix3x3 m2;
m2.SetRow(0, localRight);
m2.SetRow(1, localUp);
m2.SetRow(2, forward);
// Above we used the shortcut that for an orthonormal matrix M, M^{-1} = M^T. So set the rows
// and not the columns to directly produce the transpose, i.e. the inverse of (localRight, localUp, localForward).
// Compute final M.
m2 = m1 * m2;
// And fix any numeric stability issues by re-orthonormalizing the result.
m2.Orthonormalize(0, 1, 2);
return m2;
}
Vector3 Matrix3x3::Diagonal() const {
return {elems[0][0],
elems[1][1],
elems[2][2]
};
}
float &Matrix3x3::At(int row, int col) {
return elems[row][col];
}
Vector3 Matrix3x3::WorldZ() const {
return GetColumn(2);
}
Vector3 Matrix3x3::WorldY() const {
return GetColumn(1);
}
Vector3 Matrix3x3::WorldX() const {
return GetColumn(0);
}
Matrix3x3 Matrix3x3::FromRS(const Quaternion &rotate, const Vector3 &scale) {
return Matrix3x3(rotate) * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromRS(const Matrix3x3 &rotate, const Vector3 &scale) {
return rotate * Matrix3x3::FromScale(scale);
}
Matrix3x3 Matrix3x3::FromQuat(const Quaternion &orientation) {
return Matrix3x3(orientation);
}
Matrix3x3 Matrix3x3::ScaleBy(const Vector3 &rhs) {
return *this * FromScale(rhs);
}
Vector3 Matrix3x3::GetScale() const {
return Vector3(GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length());
}
Vector3 Matrix3x3::operator[](int row) const {
return Vector3{elems[row][0], elems[row][1], elems[row][2]};
}
Matrix3x3 Matrix3x3::FromScale(const Vector3 &scale) {
Matrix3x3 m;
m.At(0,0) = scale.x;
m.At(1,1) = scale.y;
m.At(2,2) = scale.z;
return m;
}
Matrix3x3 Matrix3x3::FromScale(float sx, float sy, float sz) {
Matrix3x3 m;
m.At(0,0) = sx;
m.At(1,1) = sy;
m.At(2,2) = sz;
return m;
}
void Matrix3x3::Orthonormalize(int c0, int c1, int c2) {
Vector3 v0 = GetColumn(c0);
Vector3 v1 = GetColumn(c1);
Vector3 v2 = GetColumn(c2);
Vector3::Orthonormalize(v0, v1, v2);
SetColumn(c0, v0);
SetColumn(c1, v1);
SetColumn(c2, v2);
}
Matrix3x3::Matrix3x3(const float *data) {
assert(data);
At(0, 0) = data[0];
At(0, 1) = data[1];
At(0, 2) = data[2];
At(1, 0) = data[4];
At(1, 1) = data[5];
At(1, 2) = data[6];
At(2, 0) = data[8];
At(2, 1) = data[9];
At(2, 2) = data[10];
}
Vector4 Matrix3x3::Mul(const Vector4 &rhs) const {
return {Mul(rhs.XYZ()), rhs.GetW()};
}
Vector3 Matrix3x3::Mul(const Vector3 &rhs) const {
return *this * rhs;
}
Vector2 Matrix3x3::Mul(const Vector2 &rhs) const {
return *this * rhs;
}
Matrix4x4 Matrix3x3::Mul(const Matrix4x4 &rhs) const {
return *this * rhs;
}
Matrix3x3 Matrix3x3::Mul(const Matrix3x3 &rhs) const {
return *this * rhs;
}
bool Matrix3x3::IsRowOrthogonal(float epsilon) const
{
return GetRow(0).IsPerpendicular(GetRow(1), epsilon)
&& GetRow(0).IsPerpendicular(GetRow(2), epsilon)
&& GetRow(1).IsPerpendicular(GetRow(2), epsilon);
}
bool Matrix3x3::IsColOrthogonal(float epsilon) const
{
return GetColumn(0).IsPerpendicular(GetColumn(1), epsilon)
&& GetColumn(0).IsPerpendicular(GetColumn(2), epsilon)
&& GetColumn(1).IsPerpendicular(GetColumn(2), epsilon);
}
bool Matrix3x3::HasUniformScale(float epsilon) const {
Vector3 scale = ExtractScale();
return Math::EqualAbs(scale.x, scale.y, epsilon) && Math::EqualAbs(scale.x, scale.z, epsilon);
}
Vector3 Matrix3x3::GetRow3(int index) const {
return GetRow(index);
}
Vector3 Matrix3x3::GetColumn3(int index) const {
return GetColumn(index);
}
Matrix4x4 Matrix3x3::operator*(const Matrix4x4 &rhs) const {
auto lhs = *this;
Matrix4x4 r;
r[0][0] = lhs.At(0, 0) * rhs.At(0, 0) + lhs.At(0, 1) * rhs.At(1, 0) + lhs.At(0, 2) * rhs.At(2, 0);
r[0][1] = lhs.At(0, 0) * rhs.At(0, 1) + lhs.At(0, 1) * rhs.At(1, 1) + lhs.At(0, 2) * rhs.At(2, 1);
r[0][2] = lhs.At(0, 0) * rhs.At(0, 2) + lhs.At(0, 1) * rhs.At(1, 2) + lhs.At(0, 2) * rhs.At(2, 2);
r[0][3] = lhs.At(0, 0) * rhs.At(0, 3) + lhs.At(0, 1) * rhs.At(1, 3) + lhs.At(0, 2) * rhs.At(2, 3);
r[1][0] = lhs.At(1, 0) * rhs.At(0, 0) + lhs.At(1, 1) * rhs.At(1, 0) + lhs.At(1, 2) * rhs.At(2, 0);
r[1][1] = lhs.At(1, 0) * rhs.At(0, 1) + lhs.At(1, 1) * rhs.At(1, 1) + lhs.At(1, 2) * rhs.At(2, 1);
r[1][2] = lhs.At(1, 0) * rhs.At(0, 2) + lhs.At(1, 1) * rhs.At(1, 2) + lhs.At(1, 2) * rhs.At(2, 2);
r[1][3] = lhs.At(1, 0) * rhs.At(0, 3) + lhs.At(1, 1) * rhs.At(1, 3) + lhs.At(1, 2) * rhs.At(2, 3);
r[2][0] = lhs.At(2, 0) * rhs.At(0, 0) + lhs.At(2, 1) * rhs.At(1, 0) + lhs.At(2, 2) * rhs.At(2, 0);
r[2][1] = lhs.At(2, 0) * rhs.At(0, 1) + lhs.At(2, 1) * rhs.At(1, 1) + lhs.At(2, 2) * rhs.At(2, 1);
r[2][2] = lhs.At(2, 0) * rhs.At(0, 2) + lhs.At(2, 1) * rhs.At(1, 2) + lhs.At(2, 2) * rhs.At(2, 2);
r[2][3] = lhs.At(2, 0) * rhs.At(0, 3) + lhs.At(2, 1) * rhs.At(1, 3) + lhs.At(2, 2) * rhs.At(2, 3);
r[3][0] = rhs.At(3, 0);
r[3][1] = rhs.At(3, 1);
r[3][2] = rhs.At(3, 2);
r[3][3] = rhs.At(3, 3);
return r;
}
Vector2 Matrix3x3::operator*(const Vector2 &rhs) const {
return Transform(rhs);
}
Matrix3x3 Matrix3x3::RotateX(float radians) {
Matrix3x3 r;
r.SetRotatePartX(radians);
return r;
}
Matrix3x3 Matrix3x3::RotateY(float radians) {
Matrix3x3 r;
r.SetRotatePartY(radians);
return r;
}
Matrix3x3 Matrix3x3::RotateZ(float radians) {
Matrix3x3 r;
r.SetRotatePartZ(radians);
return r;
}
void Matrix3x3::SetRotatePartX(float angle) {
Set3x3PartRotateX(*this, angle);
}
void Matrix3x3::SetRotatePartY(float angle) {
Set3x3PartRotateY(*this, angle);
}
void Matrix3x3::SetRotatePartZ(float angle) {
Set3x3RotatePartZ(*this, angle);
}
Vector3 Matrix3x3::ExtractScale() const {
return {GetColumn(0).Length(), GetColumn(1).Length(), GetColumn(2).Length()};
}
// TODO: Finish implementation
Matrix3x3 Matrix3x3::RotateFromTo(const Vector3 &source, const Vector3 &direction) {
assert(source.IsNormalized());
assert(source.IsNormalized());
// http://cs.brown.edu/research/pubs/pdfs/1999/Moller-1999-EBA.pdf
Matrix3x3 r;
float dot = source.Dot(direction);
if (std::abs(dot) > 0.999f)
{
Vector3 s = source.Abs();
Vector3 unit = s.x < s.y && s.x < s.z ? Vector3::UnitX : (s.y < s.z ? Vector3::UnitY : Vector3::UnitZ);
}
}
Vector3 &Matrix3x3::Row(int row) {
assert(row >= 0);
assert(row < Rows);
return reinterpret_cast<Vector3 &> (elems[row]);
}
Vector3 Matrix3x3::Column(int index) const { return GetColumn(index);}
Vector3 Matrix3x3::Col(int index) const { return Column(index);}
Vector3 &Matrix3x3::Row3(int index) {
return reinterpret_cast<Vector3 &>(elems[index]);
}
Vector3 Matrix3x3::Row3(int index) const { return GetRow3(index);}
void Matrix3x3::Set(const Matrix3x3 &x3) {
}
}