Implement generic matrix Inverse, LUDecompose, CholeskyDecompose
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m17s

This commit is contained in:
2024-05-20 20:40:33 -04:00
parent d8959ab9d1
commit ca2223aaee
2 changed files with 279 additions and 0 deletions

View File

@@ -11,6 +11,115 @@
namespace J3ML::LinearAlgebra { namespace J3ML::LinearAlgebra {
template <typename Matrix>
bool InverseMatrix(Matrix &mat, float epsilon)
{
Matrix inversed = Matrix::Identity;
const int nc = std::min<int>(Matrix::Rows, Matrix::Cols);
for (int column = 0; column < nc; ++column)
{
// find the row i with i >= j such that M has the largest absolute value.
int greatest = column;
float greatestVal = std::abs(mat[greatest][column]);
for (int i = column+1; i < Matrix::Rows; i++)
{
float val = std::abs(mat[i][column]);
if (val > greatestVal) {
greatest = i;
greatestVal = val;
}
}
if (greatestVal < epsilon) {
mat = inversed;
return false;
}
// exchange rows
if (greatest != column) {
inversed.SwapRows(greatest, column);
mat.SwapRows(greatest, column);
}
// multiply rows
assert(!Math::EqualAbs(mat[column][column], 0.f, epsilon));
float scale = 1.f / mat[column][column];
inversed.ScaleRow(column, scale);
mat.ScaleRow(column, scale);
// add rows
for (int i = 0; i < column; i++) {
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
}
for (int i = column + 1; i < Matrix::Rows; i++) {
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
}
}
mat = inversed;
return true;
}
/// Computes the LU-decomposition on the given square matrix.
/// @return True if the composition was successful, false otherwise. If the return value is false, the contents of the output matrix are unspecified.
template <typename Matrix>
bool LUDecomposeMatrix(const Matrix &mat, Matrix &lower, Matrix &upper)
{
lower = Matrix::Identity;
upper = Matrix::Zero;
for (int i = 0; i < Matrix::Rows; ++i)
{
for (int col = i; col < Matrix::Cols; ++col)
{
upper[i][col] = mat[i][col];
for (int k = 0; k < i; ++k)
upper[i][col] -= lower[i][k] * upper[k][col];
}
for (int row = i+1; row < Matrix::Rows; ++row)
{
lower[row][i] = mat[row][i];
for (int k = 0; k < i; ++k)
lower[row][i] -= lower[row][k] * upper[k][i];
if (Math::EqualAbs(upper[i][i], 0.f))
return false;
lower[row][i] /= upper[i][i];
}
}
return true;
}
/// Computes the Cholesky decomposition on the given square matrix *on the real domain*.
/// @return True if successful, false otherwise. If the return value is false, the contents of the output matrix are uspecified.
template <typename Matrix>
bool CholeskyDecomposeMatrix(const Matrix &mat, Matrix& lower)
{
lower = Matrix::Zero;
for (int i = 0; i < Matrix::Rows; ++i)
{
for (int j = 0; j < i; ++i)
{
lower[i][j] = mat[i][j];
for (int k = 0; k < j; ++k)
lower[i][j] -= lower[i][j] * lower[j][k];
if (Math::EqualAbs(lower[j][j], 0.f))
return false;
lower[i][j] /= lower[j][j];
}
lower[i][i] = mat[i][i];
if (lower[i][i])
return false;
for (int k = 0; k < i; ++k)
lower[i][i] -= lower[i][k] * lower[i][k];
lower[i][i] = std::sqrt(lower[i][i]);
}
}
/// @brief A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry. /// @brief A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
/// This matrix can represent the most generic form of transformations for 3D objects, /// This matrix can represent the most generic form of transformations for 3D objects,
/// including perspective projections, which a 4-by-3 cannot store, and translations, which a 3-by-3 cannot represent. /// including perspective projections, which a 4-by-3 cannot store, and translations, which a 3-by-3 cannot represent.
@@ -175,9 +284,29 @@ namespace J3ML::LinearAlgebra {
Vector3 GetTranslatePart() const; Vector3 GetTranslatePart() const;
/// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation). /// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation).
Matrix3x3 GetRotatePart() const; Matrix3x3 GetRotatePart() const;
/// Sets the translation part of this matrix.
/** This function sets the translation part of this matrix. These are the first three elements of the fourth column. All other entries are left untouched. */
void SetTranslatePart(float translateX, float translateY, float translateZ); void SetTranslatePart(float translateX, float translateY, float translateZ);
void SetTranslatePart(const Vector3& offset); void SetTranslatePart(const Vector3& offset);
/// Sets the 3-by-3 part of this matrix to perform rotation about the given axis and angle (in radians). Leaves all other
/// entries of this matrix untouched.
void SetRotatePart(const Quaternion& q); void SetRotatePart(const Quaternion& q);
void SetRotatePart(const Vector3& axisDirection, float angleRadians);
/// Sets the 3-by-3 part of this matrix.
/// @note This is a convenience function which calls Set3x3Part.
/// @note This function erases the previous top-left 3x3 part of this matrix (any previous rotation, scaling and shearing, etc.) Translation is unaffecte.d
void SetRotatePart(const Matrix3x3& rotation) { Set3x3Part(rotation); }
/// Sets the 3-by-3 part of this matrix to perform rotation about the positive X axis which passes through the origin.
/// Leaves all other entries of this matrix untouched.
void SetRotatePartX(float angleRadians);
/// Sets the 3-by-3 part of this matrix to perform the rotation about the positive Y axis.
/// Leaves all other entries of the matrix untouched.
void SetRotatePartY(float angleRadians);
/// Sets the 3-by-3 part of this matrix to perform the rotation about the positive Z axis.
/// Leaves all other entries of the matrix untouched.
void SetRotatePartZ(float angleRadians);
void Set3x3Part(const Matrix3x3& r); void Set3x3Part(const Matrix3x3& r);
void SetRow(int row, const Vector3& rowVector, float m_r3); void SetRow(int row, const Vector3& rowVector, float m_r3);
@@ -347,8 +476,101 @@ namespace J3ML::LinearAlgebra {
/// i.e. whether the last row of this matrix differs from [0 0 0 1] /// i.e. whether the last row of this matrix differs from [0 0 0 1]
bool ContainsProjection(float epsilon = 1e-3f) const; bool ContainsProjection(float epsilon = 1e-3f) const;
/// Sets all values of this matrix.
void Set(float _00, float _01, float _02, float _03,
float _10, float _11, float _12, float _13,
float _20, float _21, float _22, float _23,
float _30, float _31, float _32, float _34);
/// Sets this to be a copy of the matrix rhs.
void Set(const Matrix4x4 &rhs);
/// Sets all values of this matrix.
/** @param values The values in this array will be copied over to this matrix. The source must contain 16 floats in row-major order
(the same order as the Set() ufnction above has its input parameters in. */
void Set(const float *values);
/// Sets this matrix to equal the identity.
void SetIdentity();
/// Returns the adjugate of this matrix.
Matrix4x4 Adjugate() const;
/// Computes the Cholesky decomposition of this matrix.
/// The returned matrix L satisfies L * transpose(L) = this;
/// Returns true on success.
bool ColeskyDecompose(Matrix4x4 &outL) const;
/// Computes the LU decomposition of this matrix.
/// This decomposition has the form 'this = L * U'
/// Returns true on success.
bool LUDecompose(Matrix4x4& outLower, Matrix4x4& outUpper) const;
/// Inverts this matrix using the generic Gauss's method.
/// @return Returns true on success, false otherwise.
bool Inverse(float epsilon = 1e-6f)
{
return InverseMatrix(*this, epsilon);
}
/// Returns an inverted copy of this matrix.
/// If this matrix does not have an inverse, returns the matrix that was the result of running
/// Gauss's method on the matrix.
Matrix4x4 Inverted() const;
/// Inverts a column-orthogonal matrix.
/// If a matrix is of form M=T*R*S, where T is an affine translation matrix
/// R is a rotation matrix and S is a diagonal matrix with non-zero but pote ntially non-uniform scaling
/// factors (possibly mirroring), then the matrix M is column-orthogonal and this function can be used to compute the inverse.
/// Calling this function is faster than the calling the generic matrix Inverse() function.
/// Returns true on success. On failure, the matrix is not modified. This function fails if any of the
/// elements of this vector are not finite, or if the matrix contains a zero scaling factor on X, Y, or Z.
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
/// @note The returned matrix will be row-orthogonal, but not column-orthogonal in general.
/// The returned matrix will be column-orthogonal if the original matrix M was row-orthogonal as well.
/// (in which case S had uniform scale, InverseOrthogonalUniformScale() could have been used instead).
bool InverseColOrthogonal();
/// Inverts a matrix that is a concatenation of only translate, rotate, and uniform scale operations.
/// If a matrix is of form M = T*R*S, where T is an affine translation matrix,
/// R is a rotation matrix and S is a diagonal matrix with non-zero and uniform scaling factors (possibly mirroring),
/// then the matrix M is both column- and row-orthogonal and this function can be used to compute this inverse.
/// This function is faster than calling InverseColOrthogonal() or the generic Inverse().
/// Returns true on success. On failure, the matrix is not modified. This function fails if any of the
/// elements of this vector are not finite, or if the matrix contains a zero scaling factor on X, Y, or Z.
/// This function may not be called if this matrix contains any shearing or nonuniform scaling.
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
bool InverseOrthogonalUniformScale();
/// Inverts a matrix that is a concatenation of only translate and rotate operations.
/// If a matrix is of form M = T*R*S, where T is an affine translation matrix, R is a rotation
/// matrix and S is either identity or a mirroring matrix, then the matrix M is orthonormal and this function can be used to compute the inverse.
/// This function is faster than calling InverseOrthogonalUniformScale(), InverseColOrthogonal(), or the generic Inverse().
/// This function may not be called if this matrix contains any scaling or shearing, but it may contain mirroring.
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
void InverseOrthonormal(); void InverseOrthonormal();
/// Transposes this matrix.
/// This operation swaps all elements with respect to the diagonal.
void Transpose();
/// Returns a transposed copy of this matrix.
Matrix4x4 Transposed() const;
/// Computes the inverse transpose of this matrix in-place.
/// Use the inverse transpose to transform covariant vectors (normal vectors).
bool InverseTranspose();
/// Returns the inverse transpose of this matrix.
/// Use that matrix to transform covariant vectors (normal vectors).
Matrix4x4 InverseTransposed() const
{
Matrix4x4 copy = *this;
copy.Transpose();
copy.Inverse();
return copy;
}
/// Returns the sum of the diagonal elements of this matrix.
float Trace() const;
protected: protected:
float elems[4][4]; float elems[4][4];

View File

@@ -706,4 +706,61 @@ namespace J3ML::LinearAlgebra {
SetCol(column, columnVector.x, columnVector.y, columnVector.z, columnVector.w); SetCol(column, columnVector.x, columnVector.y, columnVector.z, columnVector.w);
} }
void Matrix4x4::Transpose() {
Swap(elems[0][1], elems[1][0]);
Swap(elems[0][2], elems[2][0]);
Swap(elems[0][3], elems[3][0]);
Swap(elems[1][2], elems[2][1]);
Swap(elems[1][3], elems[3][1]);
Swap(elems[2][3], elems[3][2]);
}
Matrix4x4 Matrix4x4::Transposed() const {
Matrix4x4 copy;
copy.elems[0][0] = elems[0][0]; copy.elems[0][1] = elems[1][0]; copy.elems[0][2] = elems[2][0]; copy.elems[0][3] = elems[3][0];
copy.elems[1][0] = elems[0][1]; copy.elems[1][1] = elems[1][1]; copy.elems[1][2] = elems[2][1]; copy.elems[1][3] = elems[3][1];
copy.elems[2][0] = elems[0][2]; copy.elems[2][1] = elems[1][2]; copy.elems[2][2] = elems[2][2]; copy.elems[2][3] = elems[3][2];
copy.elems[3][0] = elems[0][3]; copy.elems[3][1] = elems[1][3]; copy.elems[3][2] = elems[2][3]; copy.elems[3][3] = elems[3][3];
return copy;
}
bool Matrix4x4::InverseTranspose() {
bool success = Inverse();
Transpose();
return success;
}
float Matrix4x4::Trace() const {
assert(IsFinite());
return elems[0][0] + elems[1][1] + elems[2][2] + elems[3][3];
}
bool Matrix4x4::InverseOrthogonalUniformScale() {
assert(!ContainsProjection());
assert(IsColOrthogonal(1e-3f));
assert(HasUniformScale());
Swap(At(0, 1), At(1, 0));
Swap(At(0, 2), At(2, 0));
Swap(At(1, 2), At(2, 1));
float scale = Vector3(At(0,0), At(1, 0), At(2, 0)).LengthSquared();
if (scale == 0.f)
return false;
scale = 1.f / scale;
At(0, 0) *= scale; At(0, 1) *= scale; At(0, 2) *= scale;
At(1, 0) *= scale; At(1, 1) *= scale; At(1, 2) *= scale;
At(2, 0) *= scale; At(2, 1) *= scale; At(2, 2) *= scale;
SetTranslatePart(TransformDir(-At(0, 3), -At(1, 3), -At(2, 3)));
return true;
}
Matrix4x4 Matrix4x4::Inverted() const {
Matrix4x4 copy = *this;
copy.Inverse();
return copy;
}
} }