Implement generic matrix Inverse, LUDecompose, CholeskyDecompose
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m17s
All checks were successful
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 1m17s
This commit is contained in:
@@ -11,6 +11,115 @@
|
||||
|
||||
namespace J3ML::LinearAlgebra {
|
||||
|
||||
template <typename Matrix>
|
||||
bool InverseMatrix(Matrix &mat, float epsilon)
|
||||
{
|
||||
Matrix inversed = Matrix::Identity;
|
||||
|
||||
const int nc = std::min<int>(Matrix::Rows, Matrix::Cols);
|
||||
|
||||
for (int column = 0; column < nc; ++column)
|
||||
{
|
||||
// find the row i with i >= j such that M has the largest absolute value.
|
||||
int greatest = column;
|
||||
float greatestVal = std::abs(mat[greatest][column]);
|
||||
for (int i = column+1; i < Matrix::Rows; i++)
|
||||
{
|
||||
float val = std::abs(mat[i][column]);
|
||||
if (val > greatestVal) {
|
||||
greatest = i;
|
||||
greatestVal = val;
|
||||
}
|
||||
}
|
||||
|
||||
if (greatestVal < epsilon) {
|
||||
mat = inversed;
|
||||
return false;
|
||||
}
|
||||
|
||||
// exchange rows
|
||||
if (greatest != column) {
|
||||
inversed.SwapRows(greatest, column);
|
||||
mat.SwapRows(greatest, column);
|
||||
}
|
||||
|
||||
// multiply rows
|
||||
assert(!Math::EqualAbs(mat[column][column], 0.f, epsilon));
|
||||
float scale = 1.f / mat[column][column];
|
||||
inversed.ScaleRow(column, scale);
|
||||
mat.ScaleRow(column, scale);
|
||||
|
||||
// add rows
|
||||
for (int i = 0; i < column; i++) {
|
||||
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
|
||||
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
|
||||
}
|
||||
|
||||
for (int i = column + 1; i < Matrix::Rows; i++) {
|
||||
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
|
||||
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
|
||||
}
|
||||
}
|
||||
mat = inversed;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// Computes the LU-decomposition on the given square matrix.
|
||||
/// @return True if the composition was successful, false otherwise. If the return value is false, the contents of the output matrix are unspecified.
|
||||
template <typename Matrix>
|
||||
bool LUDecomposeMatrix(const Matrix &mat, Matrix &lower, Matrix &upper)
|
||||
{
|
||||
lower = Matrix::Identity;
|
||||
upper = Matrix::Zero;
|
||||
|
||||
for (int i = 0; i < Matrix::Rows; ++i)
|
||||
{
|
||||
for (int col = i; col < Matrix::Cols; ++col)
|
||||
{
|
||||
upper[i][col] = mat[i][col];
|
||||
for (int k = 0; k < i; ++k)
|
||||
upper[i][col] -= lower[i][k] * upper[k][col];
|
||||
}
|
||||
for (int row = i+1; row < Matrix::Rows; ++row)
|
||||
{
|
||||
lower[row][i] = mat[row][i];
|
||||
for (int k = 0; k < i; ++k)
|
||||
lower[row][i] -= lower[row][k] * upper[k][i];
|
||||
if (Math::EqualAbs(upper[i][i], 0.f))
|
||||
return false;
|
||||
lower[row][i] /= upper[i][i];
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Computes the Cholesky decomposition on the given square matrix *on the real domain*.
|
||||
/// @return True if successful, false otherwise. If the return value is false, the contents of the output matrix are uspecified.
|
||||
template <typename Matrix>
|
||||
bool CholeskyDecomposeMatrix(const Matrix &mat, Matrix& lower)
|
||||
{
|
||||
lower = Matrix::Zero;
|
||||
for (int i = 0; i < Matrix::Rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < i; ++i)
|
||||
{
|
||||
lower[i][j] = mat[i][j];
|
||||
for (int k = 0; k < j; ++k)
|
||||
lower[i][j] -= lower[i][j] * lower[j][k];
|
||||
if (Math::EqualAbs(lower[j][j], 0.f))
|
||||
return false;
|
||||
lower[i][j] /= lower[j][j];
|
||||
}
|
||||
lower[i][i] = mat[i][i];
|
||||
if (lower[i][i])
|
||||
return false;
|
||||
for (int k = 0; k < i; ++k)
|
||||
lower[i][i] -= lower[i][k] * lower[i][k];
|
||||
lower[i][i] = std::sqrt(lower[i][i]);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief A 4-by-4 matrix for affine transformations and perspective projections of 3D geometry.
|
||||
/// This matrix can represent the most generic form of transformations for 3D objects,
|
||||
/// including perspective projections, which a 4-by-3 cannot store, and translations, which a 3-by-3 cannot represent.
|
||||
@@ -175,9 +284,29 @@ namespace J3ML::LinearAlgebra {
|
||||
Vector3 GetTranslatePart() const;
|
||||
/// Returns the top-left 3x3 part of this matrix. This stores the rotation part of this matrix (if this matrix represents a rotation).
|
||||
Matrix3x3 GetRotatePart() const;
|
||||
|
||||
/// Sets the translation part of this matrix.
|
||||
/** This function sets the translation part of this matrix. These are the first three elements of the fourth column. All other entries are left untouched. */
|
||||
void SetTranslatePart(float translateX, float translateY, float translateZ);
|
||||
void SetTranslatePart(const Vector3& offset);
|
||||
/// Sets the 3-by-3 part of this matrix to perform rotation about the given axis and angle (in radians). Leaves all other
|
||||
/// entries of this matrix untouched.
|
||||
void SetRotatePart(const Quaternion& q);
|
||||
void SetRotatePart(const Vector3& axisDirection, float angleRadians);
|
||||
|
||||
/// Sets the 3-by-3 part of this matrix.
|
||||
/// @note This is a convenience function which calls Set3x3Part.
|
||||
/// @note This function erases the previous top-left 3x3 part of this matrix (any previous rotation, scaling and shearing, etc.) Translation is unaffecte.d
|
||||
void SetRotatePart(const Matrix3x3& rotation) { Set3x3Part(rotation); }
|
||||
/// Sets the 3-by-3 part of this matrix to perform rotation about the positive X axis which passes through the origin.
|
||||
/// Leaves all other entries of this matrix untouched.
|
||||
void SetRotatePartX(float angleRadians);
|
||||
/// Sets the 3-by-3 part of this matrix to perform the rotation about the positive Y axis.
|
||||
/// Leaves all other entries of the matrix untouched.
|
||||
void SetRotatePartY(float angleRadians);
|
||||
/// Sets the 3-by-3 part of this matrix to perform the rotation about the positive Z axis.
|
||||
/// Leaves all other entries of the matrix untouched.
|
||||
void SetRotatePartZ(float angleRadians);
|
||||
void Set3x3Part(const Matrix3x3& r);
|
||||
|
||||
void SetRow(int row, const Vector3& rowVector, float m_r3);
|
||||
@@ -347,8 +476,101 @@ namespace J3ML::LinearAlgebra {
|
||||
/// i.e. whether the last row of this matrix differs from [0 0 0 1]
|
||||
bool ContainsProjection(float epsilon = 1e-3f) const;
|
||||
|
||||
|
||||
/// Sets all values of this matrix.
|
||||
void Set(float _00, float _01, float _02, float _03,
|
||||
float _10, float _11, float _12, float _13,
|
||||
float _20, float _21, float _22, float _23,
|
||||
float _30, float _31, float _32, float _34);
|
||||
|
||||
/// Sets this to be a copy of the matrix rhs.
|
||||
void Set(const Matrix4x4 &rhs);
|
||||
|
||||
/// Sets all values of this matrix.
|
||||
/** @param values The values in this array will be copied over to this matrix. The source must contain 16 floats in row-major order
|
||||
(the same order as the Set() ufnction above has its input parameters in. */
|
||||
void Set(const float *values);
|
||||
|
||||
/// Sets this matrix to equal the identity.
|
||||
void SetIdentity();
|
||||
/// Returns the adjugate of this matrix.
|
||||
Matrix4x4 Adjugate() const;
|
||||
|
||||
/// Computes the Cholesky decomposition of this matrix.
|
||||
/// The returned matrix L satisfies L * transpose(L) = this;
|
||||
/// Returns true on success.
|
||||
bool ColeskyDecompose(Matrix4x4 &outL) const;
|
||||
|
||||
/// Computes the LU decomposition of this matrix.
|
||||
/// This decomposition has the form 'this = L * U'
|
||||
/// Returns true on success.
|
||||
bool LUDecompose(Matrix4x4& outLower, Matrix4x4& outUpper) const;
|
||||
|
||||
/// Inverts this matrix using the generic Gauss's method.
|
||||
/// @return Returns true on success, false otherwise.
|
||||
bool Inverse(float epsilon = 1e-6f)
|
||||
{
|
||||
return InverseMatrix(*this, epsilon);
|
||||
}
|
||||
|
||||
/// Returns an inverted copy of this matrix.
|
||||
/// If this matrix does not have an inverse, returns the matrix that was the result of running
|
||||
/// Gauss's method on the matrix.
|
||||
Matrix4x4 Inverted() const;
|
||||
|
||||
/// Inverts a column-orthogonal matrix.
|
||||
/// If a matrix is of form M=T*R*S, where T is an affine translation matrix
|
||||
/// R is a rotation matrix and S is a diagonal matrix with non-zero but pote ntially non-uniform scaling
|
||||
/// factors (possibly mirroring), then the matrix M is column-orthogonal and this function can be used to compute the inverse.
|
||||
/// Calling this function is faster than the calling the generic matrix Inverse() function.
|
||||
/// Returns true on success. On failure, the matrix is not modified. This function fails if any of the
|
||||
/// elements of this vector are not finite, or if the matrix contains a zero scaling factor on X, Y, or Z.
|
||||
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
|
||||
/// @note The returned matrix will be row-orthogonal, but not column-orthogonal in general.
|
||||
/// The returned matrix will be column-orthogonal if the original matrix M was row-orthogonal as well.
|
||||
/// (in which case S had uniform scale, InverseOrthogonalUniformScale() could have been used instead).
|
||||
bool InverseColOrthogonal();
|
||||
|
||||
|
||||
/// Inverts a matrix that is a concatenation of only translate, rotate, and uniform scale operations.
|
||||
/// If a matrix is of form M = T*R*S, where T is an affine translation matrix,
|
||||
/// R is a rotation matrix and S is a diagonal matrix with non-zero and uniform scaling factors (possibly mirroring),
|
||||
/// then the matrix M is both column- and row-orthogonal and this function can be used to compute this inverse.
|
||||
/// This function is faster than calling InverseColOrthogonal() or the generic Inverse().
|
||||
/// Returns true on success. On failure, the matrix is not modified. This function fails if any of the
|
||||
/// elements of this vector are not finite, or if the matrix contains a zero scaling factor on X, Y, or Z.
|
||||
/// This function may not be called if this matrix contains any shearing or nonuniform scaling.
|
||||
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
|
||||
bool InverseOrthogonalUniformScale();
|
||||
|
||||
/// Inverts a matrix that is a concatenation of only translate and rotate operations.
|
||||
/// If a matrix is of form M = T*R*S, where T is an affine translation matrix, R is a rotation
|
||||
/// matrix and S is either identity or a mirroring matrix, then the matrix M is orthonormal and this function can be used to compute the inverse.
|
||||
/// This function is faster than calling InverseOrthogonalUniformScale(), InverseColOrthogonal(), or the generic Inverse().
|
||||
/// This function may not be called if this matrix contains any scaling or shearing, but it may contain mirroring.
|
||||
/// This function may not be called if this matrix contains any projection (last row differs from (0 0 0 1)).
|
||||
void InverseOrthonormal();
|
||||
|
||||
/// Transposes this matrix.
|
||||
/// This operation swaps all elements with respect to the diagonal.
|
||||
void Transpose();
|
||||
/// Returns a transposed copy of this matrix.
|
||||
Matrix4x4 Transposed() const;
|
||||
/// Computes the inverse transpose of this matrix in-place.
|
||||
/// Use the inverse transpose to transform covariant vectors (normal vectors).
|
||||
bool InverseTranspose();
|
||||
/// Returns the inverse transpose of this matrix.
|
||||
/// Use that matrix to transform covariant vectors (normal vectors).
|
||||
Matrix4x4 InverseTransposed() const
|
||||
{
|
||||
Matrix4x4 copy = *this;
|
||||
copy.Transpose();
|
||||
copy.Inverse();
|
||||
return copy;
|
||||
}
|
||||
/// Returns the sum of the diagonal elements of this matrix.
|
||||
float Trace() const;
|
||||
|
||||
protected:
|
||||
float elems[4][4];
|
||||
|
||||
|
Reference in New Issue
Block a user