Dependency Reconfiguration to support MSVC being picky :/
Some checks failed
Run tests / Explore-Gitea-Actions (push) Failing after 1m10s
Build Docs With Doxygen / Explore-Gitea-Actions (push) Successful in 35s

This commit is contained in:
2024-06-16 23:02:32 -07:00
parent 2573757017
commit a5c96e8cae
13 changed files with 188 additions and 156 deletions

View File

@@ -3,11 +3,143 @@
/// Template Parameterized (Generic) Matrix Functions.
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/J3ML.h>
namespace J3ML::LinearAlgebra {
template <typename Matrix>
bool InverseMatrix(Matrix &mat, float epsilon)
{
Matrix inversed = Matrix::Identity;
const int nc = std::min<int>(Matrix::Rows, Matrix::Cols);
for (int column = 0; column < nc; ++column)
{
// find the row i with i >= j such that M has the largest absolute value.
int greatest = column;
float greatestVal = std::abs(mat[greatest][column]);
for (int i = column+1; i < Matrix::Rows; i++)
{
float val = std::abs(mat[i][column]);
if (val > greatestVal) {
greatest = i;
greatestVal = val;
}
}
if (greatestVal < epsilon) {
mat = inversed;
return false;
}
// exchange rows
if (greatest != column) {
inversed.SwapRows(greatest, column);
mat.SwapRows(greatest, column);
}
// multiply rows
assert(!Math::EqualAbs(mat[column][column], 0.f, epsilon));
float scale = 1.f / mat[column][column];
inversed.ScaleRow(column, scale);
mat.ScaleRow(column, scale);
// add rows
for (int i = 0; i < column; i++) {
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
}
for (int i = column + 1; i < Matrix::Rows; i++) {
inversed.SetRow(i, inversed.Row(i) - inversed.Row(column) * mat[i][column]);
mat.SetRow(i, mat.Row(i) - mat.Row(column) * mat[i][column]);
}
}
mat = inversed;
return true;
}
/// Computes the LU-decomposition on the given square matrix.
/// @return True if the composition was successful, false otherwise. If the return value is false, the contents of the output matrix are unspecified.
template <typename Matrix>
bool LUDecomposeMatrix(const Matrix &mat, Matrix &lower, Matrix &upper)
{
lower = Matrix::Identity;
upper = Matrix::Zero;
for (int i = 0; i < Matrix::Rows; ++i)
{
for (int col = i; col < Matrix::Cols; ++col)
{
upper[i][col] = mat[i][col];
for (int k = 0; k < i; ++k)
upper[i][col] -= lower[i][k] * upper[k][col];
}
for (int row = i+1; row < Matrix::Rows; ++row)
{
lower[row][i] = mat[row][i];
for (int k = 0; k < i; ++k)
lower[row][i] -= lower[row][k] * upper[k][i];
if (Math::EqualAbs(upper[i][i], 0.f))
return false;
lower[row][i] /= upper[i][i];
}
}
return true;
}
/// Computes the Cholesky decomposition on the given square matrix *on the real domain*.
/// @return True if successful, false otherwise. If the return value is false, the contents of the output matrix are uspecified.
template <typename Matrix>
bool CholeskyDecomposeMatrix(const Matrix &mat, Matrix& lower)
{
lower = Matrix::Zero;
for (int i = 0; i < Matrix::Rows; ++i)
{
for (int j = 0; j < i; ++i)
{
lower[i][j] = mat[i][j];
for (int k = 0; k < j; ++k)
lower[i][j] -= lower[i][j] * lower[j][k];
if (Math::EqualAbs(lower[j][j], 0.f))
return false;
lower[i][j] /= lower[j][j];
}
lower[i][i] = mat[i][i];
if (lower[i][i])
return false;
for (int k = 0; k < i; ++k)
lower[i][i] -= lower[i][k] * lower[i][k];
lower[i][i] = std::sqrt(lower[i][i]);
}
return false;
}
template<typename Matrix>
void SetMatrixRotatePart(Matrix &m, const Quaternion &q) {
// See https://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf .
assert(q.IsNormalized(1e-3f));
const float x = q.x;
const float y = q.y;
const float z = q.z;
const float w = q.w;
m[0][0] = 1 - 2 * (y * y + z * z);
m[0][1] = 2 * (x * y - z * w);
m[0][2] = 2 * (x * y + y * w);
m[1][0] = 2 * (x * y + z * w);
m[1][1] = 1 - 2 * (x * x + z * z);
m[1][2] = 2 * (y * z - x * w);
m[2][0] = 2 * (x * z - y * w);
m[2][1] = 2 * (y * z + x * w);
m[2][2] = 1 - 2 * (x * x + y * y);
}
/** Sets the top-left 3x3 area of the matrix to the rotation matrix about the X-axis. Elements
outside the top-left 3x3 area are ignored. This matrix rotates counterclockwise if multiplied
in the order M*v, and clockwise if rotated in the order v*M.