Implement Quaternion interface, massive documentation.

This commit is contained in:
2024-05-31 15:18:40 -04:00
parent 36e1f398a7
commit 98e7b5b1f1
2 changed files with 367 additions and 71 deletions

View File

@@ -5,85 +5,211 @@
#include <J3ML/LinearAlgebra/Matrix4x4.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/AxisAngle.h>
#include <J3ML/Algorithm/RNG.h>
#include <cmath>
namespace J3ML::LinearAlgebra
{
class Matrix3x3;
class Quaternion : public Vector4 {
class Quaternion {
public:
/// The identity quaternion performs no rotation when applied to a vector.
static const Quaternion Identity;
/// A compile-time constant Quaternion with the value (NAN, NAN, NAN, NAN).
/// For this constant, each element has the value of quiet NAN, or Not-A-Number.
/// @note Never compare a Quaternion to this value! Due to how IEEE floats work, "nan == nan" returns false!
/// That is, nothing is equal to NaN, not even NaN itself!
static const Quaternion NaN;
public:
/// The default constructor does not initialize any member values.
Quaternion();
/// Copy constructor
Quaternion(const Quaternion &rhs) = default;
/// Constructs a quaternion from the given data buffer.
/// @param data An array of four floats to use for the quaternion, in the order 'x,y,z,w.' (== 'i,j,k,w')
explicit Quaternion(const float *data);
explicit Quaternion(const Matrix3x3 &rotationMtrx);
explicit Quaternion(const Matrix4x4 &rotationMtrx);
// @note The input data is not normalized after construction, this has to be done manually.
/// @param x The factor of i.
/// @param y The factor of j.
/// @param z The factor of k.
/// @param w The scalar factor (or 'w').
/// @note The input data is not normalized after construction, this has to be done manually.
Quaternion(float X, float Y, float Z, float W);
// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
Quaternion(const Vector3 &rotationAxis, float rotationAngleBetween);
Quaternion(const Vector4 &rotationAxis, float rotationAngleBetween);
//void Inverted();
/// Constructs this quaternion by specifying a rotation axis and the amount of rotation to be performed about that axis
/// @param rotationAxis The normalized rotation axis to rotate about. If using Vector4 version of the constructor, the w component of this vector must be 0.
/// @param rotationAngleRadians The angle to rotate by, in radians. For example, Pi/4.f equals to 45 degrees, Pi/2.f is 90 degrees, etc.
/// @see DegToRad()
Quaternion(const Vector3 &rotationAxis, float rotationAngleRadians);
Quaternion(const Vector4 &rotationAxis, float rotationAngleRadians);
explicit Quaternion(Vector4 vector4);
explicit Quaternion(const EulerAngle& angle);
explicit Quaternion(const AxisAngle& angle);
/// Creates a LookAt quaternion.
/** A LookAt quaternion is a quaternion that orients an object to face towards a specified target direction.
@param localForward Specifies the forward direction in the local space of the object. This is the direction
the model is facing at in its own local/object space, often +X(1,0,0), +Y(0,1,0), or +Z(0,0,1).
The vector to pass in here depends on the conventions you or your modeling software is using, and it is best
to pick one convention for all your objects, and be consistent.
This input parameter must be a normalized vector.
@param targetDirection Specifies the desired world space direction the object should look at. This function
will compute a quaternion which will rotate the localForward vector to orient towards this targetDirection
vector. This input parameter must be a normalized vector.
@param localUp Specifies the up direction in the local space of the object. This is the up direction the model
was authored in, often +Y (0,1,0) or +Z (0,0,1). The vector to pass in here depends on the conventions you
or your modeling software is using, and it is best to pick one convention for all your objects, and be
consistent. This input parameter must be a normalized vector. This vector must be perpendicular to the
vector localForward, i.e. localForward.Dot(localUp) == 0.
@param worldUp Specifies the global up direction of the scene in world space. Simply rotating one vector to
coincide with another (localForward->targetDirection) would cause the up direction of the resulting
orientation to drift (e.g. the model could be looking at its target its head slanted sideways). To keep
the up direction straight, this function orients the localUp direction of the model to point towards
the specified worldUp direction (as closely as possible). The worldUp and targetDirection vectors cannot be
collinear, but they do not need to be perpendicular either.
@return A quaternion that maps the given local space forward direction vector to point towards the given target
direction, and the given local up direction towards the given target world up direction. For the returned
quaternion Q it holds that M * localForward = targetDirection, and M * localUp lies in the plane spanned
by the vectors targetDirection and worldUp.
@see RotateFromTo() */
static Quaternion LookAt(const Vector3& localForward, const Vector3& targetDirection, const Vector3& localUp, const Vector3& worldUp);
/// Creates a new Quaternion that rotates about the given axis by the given angle.
static Quaternion RotateAxisAngle(const AxisAngle& axisAngle);
/// Creates a new quaternion that rotates about the positive X axis by the given rotation.
static Quaternion RotateX(float angleRadians);
/// Creates a new quaternion that rotates about the positive Y axis by the given rotation.
static Quaternion RotateY(float angleRadians);
/// Creates a new quaternion that rotates about the positive Z axis by the given rotation.
static Quaternion RotateZ(float angleRadians);
/// Creates a new quaternion that rotates sourceDirection vector (in world space) to coincide with the
/// targetDirection vector (in world space).
/// Rotation is performed about the origin.
/// The vectors sourceDirection and targetDirection are assumed to be normalized.
/// @note There are multiple such rotations - this function returns the rotation that has the shortest angle
/// (when decomposed to axis-angle notation).
static Quaternion RotateFromTo(const Vector3& sourceDirection, const Vector3& targetDirection);
static Quaternion RotateFromTo(const Vector4& sourceDirection, const Vector4& targetDirection);
/// Creates a new quaternion that
/// 1. rotates sourceDirection vector to coincide with the targetDirection vector, and then
/// 2. rotates sourceDirection2 (which was transformed by 1.) to targetDirection2, but keeping the constraint that
/// sourceDirection must look at targetDirection
static Quaternion RotateFromTo(const Vector3& sourceDirection, const Vector3& targetDirection, const Vector3& sourceDirection2, const Vector3& targetDirection2);
/// Returns a uniformly random unitary quaternion.
static Quaternion RandomRotation(J3ML::Algorithm::RNG &rng);
public:
void SetFromAxisAngle(const Vector3 &vector3, float between);
void SetFromAxisAngle(const Vector4 &vector4, float between);
void SetFrom(const AxisAngle& angle);
Quaternion Inverse() const;
/// Inverses this quaternion in-place.
/// @note For optimization purposes, this function assumes that the quaternion is unitary, in which
/// case the inverse of the quaternion is simply just the same as its conjugate.
/// This function does not detect whether the operation succeeded or failed.
void Inverse();
Quaternion Conjugate() const;
/// Returns an inverted copy of this quaternion.
[[nodiscard]] Quaternion Inverted() const;
/// Computes the conjugate of this quaternion in-place.
void Conjugate();
/// Returns a conjugated copy of this quaternion.
[[nodiscard]] Quaternion Conjugated() const;
//void Normalize();
Vector3 GetWorldX() const;
/// Inverses this quaternion in-place.
/// Call this function when the quaternion is not known beforehand to be normalized.
/// This function computes the inverse proper, and normalizes the result.
/// @note Because of the normalization, it does not necessarily hold that q * q.InverseAndNormalize() == id.
/// @return Returns the old length of this quaternion (not the old length of the inverse quaternion).
float InverseAndNormalize();
Vector3 GetWorldY() const;
/// Returns the local +X axis in the post-transformed coordinate space. This is the same as transforming the vector (1,0,0) by this quaternion.
[[nodiscard]] Vector3 WorldX() const;
/// Returns the local +Y axis in the post-transformed coordinate space. This is the same as transforming the vector (0,1,0) by this quaternion.
[[nodiscard]] Vector3 WorldY() const;
/// Returns the local +Z axis in the post-transformed coordinate space. This is the same as transforming the vector (0,0,1) by this quaternion.
[[nodiscard]] Vector3 WorldZ() const;
Vector3 GetWorldZ() const;
/// Returns the axis of rotation for this quaternion.
[[nodiscard]] Vector3 Axis() const;
Vector3 GetAxis() const;
/// Returns the angle of rotation for this quaternion, in radians.
[[nodiscard]] float Angle() const;
float GetAngle() const;
[[nodiscard]] float LengthSquared() const;
[[nodiscard]] float Length() const;
EulerAngle ToEulerAngle() const;
[[nodiscard]] EulerAngle ToEulerAngle() const;
Matrix3x3 ToMatrix3x3() const;
[[nodiscard]] Matrix3x3 ToMatrix3x3() const;
[[nodiscard]] Matrix4x4 ToMatrix4x4() const;
Matrix4x4 ToMatrix4x4() const;
[[nodiscard]] Matrix4x4 ToMatrix4x4(const Vector3 &translation) const;
Matrix4x4 ToMatrix4x4(const Vector3 &translation) const;
Vector3 Transform(const Vector3& vec) const;
Vector3 Transform(float X, float Y, float Z) const;
[[nodiscard]] Vector3 Transform(const Vector3& vec) const;
[[nodiscard]] Vector3 Transform(float X, float Y, float Z) const;
// Note: We only transform the x,y,z components of 4D vectors, w is left untouched
Vector4 Transform(const Vector4& vec) const;
Vector4 Transform(float X, float Y, float Z, float W) const;
[[nodiscard]] Vector4 Transform(const Vector4& vec) const;
[[nodiscard]] Vector4 Transform(float X, float Y, float Z, float W) const;
Quaternion GetInverse() const;
Quaternion Lerp(const Quaternion& b, float t) const;
Quaternion Slerp(const Quaternion& q2, float t) const;
[[nodiscard]] Quaternion Lerp(const Quaternion& b, float t) const;
static Quaternion Lerp(const Quaternion &source, const Quaternion& target, float t);
[[nodiscard]] Quaternion Slerp(const Quaternion& q2, float t) const;
static Quaternion Slerp(const Quaternion &source, const Quaternion& target, float t);
Quaternion Normalize() const;
/// Returns the 'from' vector rotated towards the 'to' vector by the given normalized time parameter.
/** This function slerps the given 'form' vector toward the 'to' vector.
@param from A normalized direction vector specifying the direction of rotation at t=0
@param to A normalized direction vector specifying the direction of rotation at t=1
@param t The interpolation time parameter, in the range [0, 1]. Input values outside this range are
silently clamped to the [0, 1] interval.
@return A spherical linear interpolation of the vector 'from' towards the vector 'to'. */
static Vector3 SlerpVector(const Vector3& from, const Vector3& to, float t);
/// Returns the 'from' vector rotated towards the 'to' vector by the given absolute angle, in radians.
/** This function slerps the given 'from' vector towards the 'to' vector.
@param from A normalized direction vector specifying the direction of rotation at angleRadians=0.
@param to A normalized direction vector specifying the target direction to rotate towards.
@param angleRadians The maximum angle to rotate the 'from' vector by, in the range [0, pi]. If the
angle between 'from' and 'to' is smaller than this angle, then the vector 'to' is returned.
Input values outside this range are silently clamped to the [0, pi] interval.
@return A spherical linear interpolation of the vector 'from' towards the vector 'to'. */
static Vector3 SlerpVectorAbs(const Vector3 &from, const Vector3& to, float angleRadians);
static Quaternion LookAt(const Vector3& position, const Vector3& direction, const Vector3& axisUp);
/// Normalizes this quaternion in-place.
/// Returns the old length of this quaternion, or 0 if normalization failed.
float Normalize();
/// Returns a normalized copy of this quaternion.
[[nodiscard]] Quaternion Normalized() const;
/// Returns true if the length of this quaternion is one.
[[nodiscard]] bool IsNormalized(float epsilon = 1e-5f) const;
[[nodiscard]] bool IsInvertible(float epsilon = 1e-3f) const;
/// Returns true if the entries of this quaternion are all finite.
[[nodiscard]] bool IsFinite() const;
/// Returns true if this quaternion equals rhs, up to the given epsilon.
[[nodiscard]] bool Equals(const Quaternion& rhs, float epsilon = 1e-3f) const;
/// Compares whether this Quaternion and the given Quaternion are identical bit-by-bit in the underlying representation.
/// @note Prefer using this over e.g. memcmp, since there can be SSE-related padding in the structures.
bool BitEquals(const Quaternion& rhs) const;
/// @return A pointer to the first element (x). The data is contiguous in memory.
/// ptr[0] gives x, ptr[1] gives y, ptr[2] gives z, ptr[3] gives w.
inline float *ptr() { return &x; }
[[nodiscard]] inline const float *ptr() const { return &x; }
// TODO: Document (But do not override!) certain math functions that are the same for Vec4
// TODO: Double Check which operations need to be overriden for correct behavior!
// Multiplies two quaternions together.
// The product q1 * q2 returns a quaternion that concatenates the two orientation rotations.
@@ -99,14 +225,37 @@ namespace J3ML::LinearAlgebra
// Divides a quaternion by another. Divison "a / b" results in a quaternion that rotates the orientation b to coincide with orientation of
Quaternion operator / (const Quaternion& rhs) const;
Quaternion operator + (const Quaternion& rhs) const;
Quaternion operator / (float scalar) const
{
assert(!Math::EqualAbs(scalar, 0.f));
}
Quaternion operator + () const;
Quaternion operator - () const;
float Dot(const Quaternion &quaternion) const;
float Angle() const { return acos(w) * 2.f;}
/// Computes the dot product of this and the given quaternion.
/// Dot product is commutative.
[[nodiscard]] float Dot(const Quaternion &quaternion) const;
float AngleBetween(const Quaternion& target) const;
/// Returns the angle between this and the target orientation (the shortest route) in radians.
[[nodiscard]] float AngleBetween(const Quaternion& target) const;
/// Returns the axis of rotation to get from this orientation to target orientation (the shortest route).
[[nodiscard]] Vector3 AxisFromTo(const Quaternion& target) const;
AxisAngle ToAxisAngle() const;
[[nodiscard]] AxisAngle ToAxisAngle() const;
void SetFromAxisAngle(const AxisAngle& axisAngle);
/// Sets this quaternion to represent the same rotation as the given matrix.
void Set(const Matrix3x3& matrix);
void Set(const Matrix4x4& matrix);
void Set(float x, float y, float z, float w);
void Set(const Quaternion& q);
void Set(const Vector4& v);
public:
float x;
float y;
float z;
float w;
};
}