Move template-parameterized matrix operations to Matrices.inl (excluding SetMatrixRotatePart(T, Quaternion) due to symbol resolution error)
Some checks are pending
Run tests / Explore-Gitea-Actions (push) Waiting to run
Build Docs With Doxygen / Explore-Gitea-Actions (push) Waiting to run

This commit is contained in:
2024-05-29 11:14:12 -04:00
parent 201fb4a28d
commit 5e253e0b2c
5 changed files with 128 additions and 87 deletions

View File

@@ -0,0 +1,105 @@
#pragma once
/// Template Parameterized (Generic) Matrix Functions.
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace J3ML::LinearAlgebra {
/** Sets the top-left 3x3 area of the matrix to the rotation matrix about the X-axis. Elements
outside the top-left 3x3 area are ignored. This matrix rotates counterclockwise if multiplied
in the order M*v, and clockwise if rotated in the order v*M.
@param m The matrix to store the result.
@param angle the rotation angle in radians. */
template<typename Matrix>
void Set3x3PartRotateX(Matrix &m, float angle) {
float sinz, cosz;
sinz = std::sin(angle);
cosz = std::cos(angle);
m[0][0] = 1.f;
m[0][1] = 0.f;
m[0][2] = 0.f;
m[1][0] = 0.f;
m[1][1] = cosz;
m[1][2] = -sinz;
m[2][0] = 0.f;
m[2][1] = sinz;
m[2][2] = cosz;
}
/** Sets the top-left 3x3 area of the matrix to the rotation matrix about the Y-axis. Elements
outside the top-left 3x3 area are ignored. This matrix rotates counterclockwise if multiplied
in the order M*v, and clockwise if rotated in the order v*M.
@param m The matrix to store the result
@param angle The rotation angle in radians. */
template<typename Matrix>
void Set3x3PartRotateY(Matrix &m, float angle) {
float sinz, cosz;
sinz = std::sin(angle);
cosz = std::cos(angle);
m[0][0] = cosz;
m[0][1] = 0.f;
m[0][2] = sinz;
m[1][0] = 0.f;
m[1][1] = 1.f;
m[1][2] = 0.f;
m[2][0] = -sinz;
m[2][1] = 0.f;
m[2][2] = cosz;
}
/** Sets the top-left 3x3 area of the matrix to the rotation matrix about the Z-axis. Elements
outside the top-left 3x3 area are ignored. This matrix rotates counterclockwise if multiplied
in the order of M*v, and clockwise if rotated in the order v*M.
@param m The matrix to store the result.
@param angle The rotation angle in radians. */
template<typename Matrix>
void Set3x3PartRotateZ(Matrix &m, float angle) {
float sinz, cosz;
sinz = std::sin(angle);
cosz = std::cos(angle);
m[0][0] = cosz;
m[0][1] = -sinz;
m[0][2] = 0.f;
m[1][0] = sinz;
m[1][1] = cosz;
m[1][2] = 0.f;
m[2][0] = 0.f;
m[2][1] = 0.f;
m[2][2] = 1.f;
}
/** Computes the matrix M = R_x * R_y * R_z, where R_d is the cardinal rotation matrix
about the axis +d, rotating counterclockwise.
This function was adapted from https://www.geometrictools.com/Documentation/EulerAngles.pdf .
Parameters x y and z are the angles of rotation, in radians. */
template<typename Matrix>
void Set3x3PartRotateEulerXYZ(Matrix &m, float x, float y, float z) {
// TODO: vectorize to compute 4 sines + cosines at one time;
float cx = std::cos(x);
float sx = std::sin(x);
float cy = std::cos(y);
float sy = std::sin(y);
float cz = std::cos(z);
float sz = std::sin(z);
m[0][0] = cy * cz;
m[0][1] = -cy * sz;
m[0][2] = sy;
m[1][0] = cz * sx * sy + cx * sz;
m[1][1] = cx * cz - sx * sy * sz;
m[1][2] = -cy * sx;
m[2][0] = -cx * cz * sy + sx * sz;
m[2][1] = cz * sx + cx * sy * sz;
m[2][2] = cx * cy;
}
}