1
0
forked from josh/j3ml
Files
j3ml-fork/include/J3ML/Geometry/AABB.h

154 lines
5.9 KiB
C++

#pragma once
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra.h>
#include <J3ML/Geometry.h>
#include <J3ML/Geometry/Plane.h>
#include <J3ML/Geometry/Sphere.h>
#include <J3ML/Geometry/OBB.h>
#include <J3ML/Geometry/LineSegment.h>
#include <J3ML/Geometry/Triangle.h>
#include <J3ML/Geometry/Polygon.h>
#include <J3ML/Geometry/Frustum.h>
#include <J3ML/Geometry/Capsule.h>
#include <J3ML/Geometry/Ray.h>
#include <J3ML/Geometry/TriangleMesh.h>
#include <J3ML/Geometry/Polyhedron.h>
// TODO: Fix circular include between AABB and OBB
namespace Geometry
{
using namespace LinearAlgebra;
// A 3D axis-aligned bounding box
// This data structure can be used to represent coarse bounds of objects, in situations where detailed triangle-level
// computations can be avoided. In physics systems, bounding boxes are used as an efficient early-out test for geometry
// intersection queries.
// the 'Axis-aligned' part in the name means that the local axes of this bounding box are restricted to align with the
// axes of the world space coordinate system. This makes computation involving AABB's very fast, since AABB's cannot
// be arbitrarily oriented in the space with respect to each other.
// If you need to represent a box in 3D space with arbitrary orientation, see the class OBB. */
class AABB
{
public:
Vector3 minPoint;
Vector3 maxPoint;
static int NumFaces() { return 6; }
static int NumEdges() { return 12;}
static int NumVertices() { return 8;}
static AABB FromCenterAndSize(const Vector3& center, const Vector3& size)
{
Vector3 halfSize = size * 0.5f;
return {center - halfSize, center + halfSize};
}
float MinX() const { return minPoint.x; }
float MinY() const { return minPoint.y; }
float MinZ() const { return minPoint.z; }
float MaxX() const { return maxPoint.x; }
float MaxY() const { return maxPoint.y; }
float MaxZ() const { return maxPoint.z; }
/// Returns the smallest sphere that contains this AABB.
/// This function computes the minimal volume sphere that contains all the points inside this AABB
Sphere MinimalEnclosingSphere() const
{
return Sphere(Centroid(), Size().Length()*0.5f);
}
Vector3 HalfSize() const {
return this->Size()/2.f;
}
// Returns the largest sphere that can fit inside this AABB
// This function computes the largest sphere that can fit inside this AABB.
Sphere MaximalContainedSphere() const
{
Vector3 halfSize = HalfSize();
return Sphere(Centroid(), std::min(halfSize.x, std::min(halfSize.y, halfSize.z)));
}
bool IsFinite() const
{
return minPoint.IsFinite() && maxPoint.IsFinite();
}
Vector3 Centroid() const
{
return (minPoint+maxPoint) * 0.5f;
}
Vector3 Size() const
{
return this->maxPoint - this->minPoint;
}
// Quickly returns an arbitrary point inside this AABB
Vector3 AnyPointFast() const;
Vector3 PointInside(float x, float y, float z) const
{
Vector3 d = maxPoint - minPoint;
return minPoint + d.Mul({x, y, z});
}
// Returns an edge of this AABB
LineSegment Edge(int edgeIndex) const
{
switch(edgeIndex)
{
default:
case 0: return LineSegment(minPoint, {minPoint.x, minPoint.y, maxPoint.z});
}
}
Vector3 CornerPoint(int cornerIndex);
Vector3 ExtremePoint(const Vector3& direction) const;
Vector3 ExtremePoint(const Vector3& direction, float projectionDistance);
Vector3 PointOnEdge(int edgeIndex, float u) const;
Vector3 FaceCenterPoint(int faceIndex) const;
Vector3 FacePoint(int faceIndex, float u, float v) const;
Vector3 FaceNormal(int faceIndex) const;
Plane FacePlane(int faceIndex);
static AABB MinimalEnclosingAABB(const Vector3* pointArray, int numPoints);
Vector3 GetVolume();
float GetVolumeCubed();
float GetSurfaceArea();
Vector3 GetRandomPointInside();
Vector3 GetRandomPointOnSurface();
Vector3 GetRandomPointOnEdge();
Vector3 GetRandomCornerPoint();
AABB Translated(const Vector3& offset) const;
AABB TransformAABB(const Matrix3x3& transform);
AABB TransformAABB(const Matrix4x4& transform);
AABB TransformAABB(const Quaternion& transform);
OBB Transform(const Matrix3x3& transform);
OBB Transform(const Matrix4x4& transform);
OBB Transform(const Quaternion& transform);
bool Contains(const Vector3& point) const;
bool Contains(const LineSegment& lineSegment) const;
bool Contains(const AABB& aabb) const;
bool Contains(const OBB& obb) const;
bool Contains(const Sphere& sphere) const;
bool Contains(const Triangle& triange) const;
bool Contains(const Polygon& polygon) const;
bool Contains(const Frustum& frustum) const;
bool Contains(const Polyhedron& polyhedron) const;
bool Contains(const Capsule& capsule) const;
// Tests whether this AABB and the given object intersect.
bool Intersects(const Ray& ray, float dNear, float dFar) const;
bool Intersects(const Capsule& capsule) const;
bool Intersects(const Triangle& triangle) const;
bool Intersects(const Polygon& polygon) const;
bool Intersects(const Frustum& frustum) const;
bool Intersects(const Polyhedron& polyhedron) const;
TriangleMesh Triangulate(int numFacesX, int numFacesY, int numFacesZ, bool ccwIsFrontFacing) const;
AABB Intersection(const AABB& rhs) const;
bool IntersectLineAABB(const Vector3& linePos, const Vector3& lineDir, float tNear, float tFar) const;
};
}