1
0
forked from josh/j3ml
Files
j3ml-fork/src/J3ML/LinearAlgebra/Vector3.cpp
2024-01-02 21:31:44 -05:00

305 lines
7.4 KiB
C++

#include <J3ML/LinearAlgebra/Vector3.h>
#include <algorithm>
#include <cassert>
#include <cmath>
namespace LinearAlgebra {
#pragma region vector3
const Vector3 Vector3::Zero = {0,0,0};
const Vector3 Vector3::Up = {0, -1, 0};
const Vector3 Vector3::Down = {0, 1, 0};
const Vector3 Vector3::Left = {-1, 0, 0};
const Vector3 Vector3::Right = {1, 0, 0};
const Vector3 Vector3::Forward = {0, 0, -1};
const Vector3 Vector3::Backward = {0, 0, 1};
const Vector3 Vector3::NaN = {NAN, NAN, NAN};
Vector3 Vector3::operator+(const Vector3& rhs) const
{
return {this->x + rhs.x, this->y + rhs.y, this->z + rhs.z};
}
Vector3 Vector3::operator-(const Vector3& rhs) const
{
return {
this->x- rhs.x,
this->y-rhs.y,
this->z-rhs.z
};
}
Vector3 Vector3::operator*(float rhs) const
{
return {
this->x * rhs,
this->y * rhs,
this->z * rhs
};
}
Vector3 Vector3::operator/(float rhs) const
{
return {
this->x / rhs,
this->y / rhs,
this->z / rhs
};
}
Vector3 Vector3::operator-() const
{
return {-x, -y, -z};
}
Vector3::Vector3(): x(0), y(0), z(0) {}
Vector3::Vector3(float X, float Y, float Z): x(X), y(Y), z(Z) {}
Vector3::Vector3(const Vector3& rhs) : x(rhs.x), y(rhs.y), z(rhs.z) {}
Vector3& Vector3::operator=(const Vector3& rhs)
{
this->x = rhs.x;
this->y = rhs.y;
this->z = rhs.z;
return *this;
}
float Vector3::operator[](std::size_t index) const
{
assert(index < 3);
if (index==0) return x;
if (index==1) return y;
if (index==2) return z;
return 0;
}
bool Vector3::IsWithinMarginOfError(const Vector3& rhs, float margin) const
{
return this->Distance(rhs) <= margin;
}
bool Vector3::operator==(const Vector3& rhs) const
{
return this->IsWithinMarginOfError(rhs);
}
bool Vector3::operator!=(const Vector3& rhs) const
{
return this->IsWithinMarginOfError(rhs) == false;
}
Vector3 Vector3::Min(const Vector3& min) const
{
return {
std::min(this->x, min.x),
std::min(this->y, min.y),
std::min(this->z, min.z)
};
}
Vector3 Vector3::Max(const Vector3& max) const
{
return {
std::max(this->x, max.x),
std::max(this->y, max.y),
std::max(this->z, max.z)
};
}
Vector3 Vector3::Clamp(const Vector3& min, const Vector3& max) const
{
return {
std::clamp(this->x, min.x, max.x),
std::clamp(this->y, min.y, max.y),
std::clamp(this->z, min.z, max.z)
};
}
float Vector3::Distance(const Vector3& to) const
{
return ((*this)-to).Magnitude();
}
float Vector3::Length() const
{
return std::sqrt(LengthSquared());
}
float Vector3::LengthSquared() const
{
return (x*x + y*y + z*z);
}
float Vector3::Magnitude() const
{
return std::sqrt(x*x + y*y + z*z);
}
float Vector3::Dot(const Vector3& rhs) const
{
auto a = this->Normalize();
auto b = rhs.Normalize();
return a.x * b.x +
a.y * b.y +
a.z * b.z;
}
Vector3 Vector3::Project(const Vector3& rhs) const
{
float scalar = this->Dot(rhs) / (rhs.Magnitude()*rhs.Magnitude());
return rhs * scalar;
}
Vector3 Vector3::Cross(const Vector3& rhs) const
{
return {
this->y * rhs.z - this->z * rhs.y,
this->z * rhs.x - this->x * rhs.z,
this->x * rhs.y - this->y * rhs.x
};
}
Vector3 Vector3::Normalize() const
{
if (Length() > 0)
return {
x / Length(),
y / Length(),
z / Length()
};
else
return {0,0,0};
}
Vector3 Vector3::Lerp(const Vector3& goal, float alpha) const
{
return this->operator*(1.0f - alpha) + (goal * alpha);
}
float Vector3::GetX() const { return x;}
float Vector3::GetY() const { return y;}
float Vector3::GetZ() const { return z;}
void Vector3::SetX(float newX) { x = newX;}
void Vector3::SetY(float newY) { y = newY;}
void Vector3::SetZ(float newZ) { z = newZ;}
Vector3 Vector3::Min(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Min(rhs);
}
Vector3 Vector3::Max(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Max(rhs);
}
Vector3 Vector3::Clamp(const Vector3 &min, const Vector3 &input, const Vector3 &max) {
return input.Clamp(min, max);
}
float Vector3::Distance(const Vector3 &from, const Vector3 &to) {
return from.Distance(to);
}
float Vector3::Length(const Vector3 &of) {
return of.Length();
}
float Vector3::LengthSquared(const Vector3 &of) {
return of.LengthSquared();
}
bool Vector3::IsPerpendicular(const Vector3 &other, float epsilonSq) const {
float dot = Dot(other);
return dot*dot <= epsilonSq * LengthSquared() * other.LengthSquared();
}
bool Vector3::IsZero(float epsilonSq) const {
return LengthSquared() <= epsilonSq;
}
bool Vector3::IsNormalized(float epsilonSq) const {
return std::abs(LengthSquared()-1.f) <= epsilonSq;
}
Vector3 Vector3::Cross(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Cross(rhs);
}
Vector3 Vector3::Normalize(const Vector3 &targ) {
return targ.Normalize();
}
Vector3 Vector3::Project(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Project(rhs);
}
float Vector3::Dot(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Dot(rhs);
}
float Vector3::Magnitude(const Vector3 &of) {
return of.Magnitude();
}
Vector3 Vector3::Lerp(const Vector3 &lhs, const Vector3 &rhs, float alpha) {
return lhs.Lerp(rhs, alpha);
}
Vector3 Vector3::Add(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Add(rhs);
}
Vector3 Vector3::Add(const Vector3 &rhs) const {
return *this + rhs;
}
Vector3 Vector3::Sub(const Vector3 &rhs) const {
return *this - rhs;
}
Vector3 Vector3::Sub(const Vector3 &lhs, const Vector3 &rhs) {
return lhs.Sub(rhs);
}
Vector3 Vector3::Mul(float scalar) const {
return *this * scalar;
}
Vector3 Vector3::Mul(const Vector3 &lhs, float rhs) {
return lhs.Mul(rhs);
}
Vector3 Vector3::Div(float scalar) const {
return *this / scalar;
}
Vector3 Vector3::Div(const Vector3 &lhs, float rhs) {
return lhs.Div(rhs);
}
Angle2D Vector3::AngleBetween(const Vector3 &rhs) const {
const auto Pi_x_180 = 180.f / M_PI;
auto dist = this->Distance(rhs);
float x = -(asinf((rhs.y - this->y) / dist));
float y = (atan2f(rhs.x - this->x,rhs.z - this->z));
return {x, y};
}
Angle2D Vector3::AngleBetween(const Vector3 &lhs, const Vector3 &rhs) // TODO: 3D Angle representation?
{
return lhs.AngleBetween(rhs);
}
#pragma endregion
}