1
0
forked from josh/j3ml

Adding code x3

This commit is contained in:
2023-12-27 21:42:38 -06:00
parent f90f1cf40b
commit 24cc2e79bc
8 changed files with 152 additions and 35 deletions

View File

@@ -1,7 +1,7 @@
#include <J3ML/LinearAlgebra/Quaternion.h>
#include <J3ML/LinearAlgebra/Vector3.h>
#include <J3ML/LinearAlgebra/Vector4.h>
#include <J3ML/LinearAlgebra/Matrix3x3.h>
#include <J3ML/LinearAlgebra/Quaternion.h>
namespace LinearAlgebra {
Quaternion Quaternion::operator-() const
@@ -56,4 +56,90 @@ namespace LinearAlgebra {
Quaternion Quaternion::operator+() const { return *this; }
Quaternion::Quaternion() {}
Quaternion::Quaternion(float X, float Y, float Z, float W) : Vector4(X,Y,Z,W) {}
// TODO: implement
float Quaternion::Dot(const Quaternion &quaternion) const {}
Quaternion::Quaternion(Vector4 vector4) {
}
float Quaternion::Angle() const {
return std::acos(w) * 2.f;
}
Quaternion Quaternion::Normalize() const {
float length = Length();
if (length < 1e-4f)
return {0,0,0,0};
float reciprocal = 1.f / length;
return {
x * reciprocal,
y * reciprocal,
z * reciprocal,
w * reciprocal
};
}
Quaternion Quaternion::Conjugate() const {
return { -x, -y, -z, w };
}
Quaternion Quaternion::Inverse() const {
return Conjugate();
}
Quaternion Quaternion::Slerp(const Quaternion &q2, float t) const {
float angle = this->Dot(q2);
float sign = 1.f;
if (angle < 0.f)
{
angle = -angle;
sign = -1.f;
}
float a;
float b;
if (angle < 0.999)
{
// angle = Acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;
float ta = t*angle;
// Not using a lookup table, manually compute the two sines by using a very rough approximation.
float ta2 = ta*ta;
b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
a = angle - ta;
float a2 = a*a;
a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
}
else // If angle is close to taking the denominator to zero, resort to linear interpolation (and normalization).
{
a = 1.f - t;
b = t;
}
// Lerp and renormalize.
return (*this * (a * sign) + q2 * b).Normalize();
}
AxisAngle Quaternion::ToAxisAngle() const {
float halfAngle = std::acos(w);
float angle = halfAngle * 2.f;
// TODO: Can Implement Fast Inverse Sqrt Here
float reciprocalSinAngle = 1.f / std::sqrt(1.f - w*w);
Vector3 axis = {
x*reciprocalSinAngle,
y*reciprocalSinAngle,
z*reciprocalSinAngle
};
return {axis, angle};
}
float Quaternion::AngleBetween(const Quaternion &target) const {
Quaternion delta = target / *this;
return delta.Normalize().Angle();
}
}

View File

@@ -1,3 +1,5 @@
//
// Created by josh on 12/26/2023.
//
#include <J3ML/LinearAlgebra/Transform2D.h>
namespace LinearAlgebra {
}

View File

@@ -118,6 +118,19 @@ Vector4 Vector4::operator-(const Vector4& rhs) const
return {x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w};
}
Vector4 Vector4::operator*(float rhs) const {
return {
this->x * rhs,
this->y * rhs,
this->z * rhs,
this->w * rhs
};
}
bool Vector4::IsWithinMarginOfError(const Vector4 &rhs, float margin) const {
return this->Distance(rhs) <= margin;
}
}
#pragma endregion